[1] 王邵军, 曹子林, 李小英, 等. 滇池湖滨带不同植被类型土壤碳、氮时空分布特征[J]. 南京林业大学学报(自然科学版), 2013, 37(5):55-59. Doi:10.3969/j.issn.1000-2006.2013.05.011.
Wang S J, Cao Z L, Li X Y, et al. Spatiotemporal distributions of soil carbon and nitrogen under the four riparian zones in the Dianchi Lake[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(5):55-59.
[2] 陆健健.中国滨海湿地的分类[J].环境导报,1996(1):1-2.
[3] Ward B B, Devol A H, Rich J J, et al. Denitrification as the dominant nitrogen loss process in the Arabian Sea[J].Nature, 2009, 461(7260): 78-81. Doi:10.1038/nature08276.
[4] Fernandes S O, Bonin P C, Michotey V D, et al. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium[J]. Sci Rep, 2012, 2: 419. Doi:10.1038/srep00419.
[5] Zhang W J, Zhang Y, Su W T, et al. Effects of cathode potentials and nitrate concentrations on dissimilatory nitrate reductions by Pseudomonas alcaliphila in bioelectrochemical systems[J]. Journal of Environmental Sciences, 2014, 26(4): 885-891. Doi:10.1016/S1001-0742(13)60460-X.
[6] 蔡延江, 丁维新, 项剑. 土壤N2O和NO产生机制研究进展[J]. 土壤, 2012, 44(5):712-718. Doi:10.3969/j.issn.0253-9829.2012.05.002.
Cai Y J, Ding W X, Xiang J. Mechanisms of nitrous oxide and nitric oxide production in soils: a review[J]. Soils, 2012, 44(5):712-718.
[7] 王洋, 刘景双, 孙志高, 等. 湿地系统氮的生物地球化学研究概述[J]. 湿地科学, 2006, 4(4):311-320. Doi:10.3969/j.issn.1672-5948.2006.04.013.
Wang Y, Liu J S, Sun Z G, et al. A review on nitrogen biogeochemistry study in wetland systems[J]. Wetland Science, 2006, 4(4):311-320.
[8] 韦宗敏.微好氧环境中硝酸盐异化还原成铵的影响研究[D].广州:华南理工大学,2012.
[9] Yin S X, Shen Q R, Tang Y, et al. Reduction of nitrate to ammonium in slected paddy soils of China[J]. Pedosphere,1998,8(3):221-228.
[10] Rütting T, Boeckx P, Müller C, et al. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle[J]. Biogeosciences, 2011, 8(7): 1779-1791. Doi:10.5194/bg-8-1779-2011.
[11] 蒋然, 陈韦丽, 王伟, 等. 珠江河口沉积物通过异化还原成铵的氮素内源性污染研究[J]. 珠江现代建设, 2015(3):24-28.
[12] 胡泓. 长江口芦苇湿地温室气体排放通量及影响因素研究[D]. 上海:华东师范大学, 2014.
[13] 万晓红,王雨春,陆瑾,等.白洋淀湿地氮素转化和N2O排放特征研究[J].水利学报,2009,40(10):1168-1174.
[14] 李文静.黄河沙岸带湿地污染特征及其反硝化活性研究[D].广州:华南理工大学,2011.
[15] 张晓龙, 李培英, 李萍, 等. 中国滨海湿地研究现状与展望[J]. 海洋科学进展, 2005, 23(1):87-95. Doi:10.3969/j.issn.1671-6647.2005.01.013.
Zhang X L, Li P Y, Li P, et al. Present conditions and prospects of study on coastal wetlands in China[J]. Advances in marine science, 2005, 23(1):87-95.
[16] 崔洪磊, 徐莎, 印杰, 等. 植被收割对滨海湿地沉积物中CO2和N2O释放的影响[J]. 环境科学研究,2015, 28(8):1200-1208.
Cui H L, Xu S, Yin J, et al. Effects of vegetation harvest on CO2 and N2O emissions from sediments in a typical coastal wetland[J]. Research of Environmental Sciences, 2015, 28(8):1200-1208. Doi:10.13198/j.issn.1001-6929.2015.08.04.
[17] Levenson H. Coastal systems: On the margin[C] // Coastal wetlands. New York:American Society of Civil Engineers, 2011:75-83.
[18] Burden A, Garbutt R A, Evans C D, et al. Carbon sequestration and biogeochemical cycling in a saltmarsh subject to coastal managed realignment[J]. Estuarine, Coastal and Shelf Science, 2013, 120: 12-20. Doi:10.1016/j.ecss.2013.01.014.
[19] Gedan K B, Kirwan M L, Wolanski E, et al. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm[J]. Climatic Change,2011,106:7-29. Doi:10.1007/s10584-010-0003-7
[20] Irving A D, Connell S D, Russell B D. Restoring coastal plants to improve global carbon storage: reaping what we sow[J]. PLoS One, 2011, 6(3): e18311. Doi:10.1371/journal.pone.0018311.
[21] Hopkinson C S, Cai W J, Hu X P. Carbon sequestration in wetland dominated coastal systems: a global sink of rapidly diminishing magnitude [J]. Current Opinion in Environmental Sustainability, 2012,4(2):186-194. Doi:10.1016/j.cosust.2012.03.005
[22] 何小勤, 戴雪荣, 顾成军. 崇明东滩不同部位的季节性沉积研究[J]. 长江流域资源与环境, 2009,18(2):157-162. Doi:10.3969/j.issn.1004-8227.2009.02.011.
He X Q, Dai X R, Gu C J. A study on seasonal erosion-accretion cycle of Chongming east tidal flat, the Yangtze estuary[J]. Resources and Environment in the Yangtze Basin, 2009, 18(2):157-162.
[23] 姜俊彦, 黄星, 李秀珍, 等. 潮滩湿地土壤有机碳储量及其与土壤理化因子的关系——以崇明东滩为例[J]. 生态与农村环境学报, 2015, 31(4):540-547. Doi:10.11934/j.issn.1673-4831.2015.04.015.
Jiang J Y, Huang X, Li X Z, et al. Soil organic carbon storage in tidal wetland and its relationships with soil physico-chemical factors: a case study of dongtan of Chongming, Shanghai[J]. Journal of Ecology and Rural Environment, 2015, 31(4):540-547.
[24] 孙建飞, 白娥, 戴崴巍, 等. 15N标记土壤连续培养过程中扩散法测定无机氮同位素方法改进[J]. 生态学杂志, 2014, 33(9):2574-2580.Doi:10.13292/j.1000-4890.2014.0176.
Sun J F, Bai E, Dai W W, et al. Improvements of the diffusion method to measure inorganic nitrogen isotope of 15N labeled soil[J]. Chinese Journal of Ecology, 2014, 33(9):2574-2580.
[25] 游丽丽.河口潮滩湿地植被对沉积物反硝化过程影响初探[D].上海:华东师范大学,2014.
[26] 李勇, 刘敏, 陆敏, 等. 崇明东滩芦苇湿地氧化亚氮排放[J]. 环境科学学报, 2010, 30(12):2526-2534.
Li Y, Liu M, Lu M, et al. Phragmites australis effects on N2O emission in the Chongming eastern tidal flat[J].Acta Scientiae Circumstantiae, 2010, 30(12):2526-2534.
[27] 章振亚, 丁陈利, 肖明. 崇明东滩湿地不同潮汐带入侵植物互花米草根际细菌的多样性[J]. 生态学报, 2012, 32(21):6636-6646.
Zhang Z Y, Ding C L, Xiao M. The diversity of invasive plant Spartina alterniflora rhizosphere bacteria in a tidal salt marshes at Chongming Dongtan in the Yangtze River estuary[J]. Acta Ecologica Sinica, 2012, 32(21):6636-6646. Doi:10.5846/stxb201109201385.
[28] Laverman A M, Canavan R W, Slomp C P, et al. Potential nitrate removal in a coastal freshwater sediment(Haringvliet Lake, the Netherlands)and response to salinization[J]. Water Res, 2007, 41(14): 3061-3068.Doi:10.1016/j.watres.2007.04.002.
[29] 章振亚.崇明东滩湿地互花米草与芦苇、海三棱蔍草根际固氮微生物多样性研究[D].上海:上海师范大学,2012.
[30] Herbert R A. Nitrogen cycling in coastal marine ecosystems[J]. FEMS Microbiol Rev, 1999, 23(5): 563-590.Doi:10.1111/j.1574-6976.1999.tb00414.x.
[31] Thauer R K, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria[J]. Bacteriol Rev, 1977, 41(1): 100-180.
[32] Strohm T O, Griffin B, Zumft W G, et al. Growth yields in bacterial denitrification and nitrate ammonification[J].Appl Environ Microbiol, 2007, 73(5): 1420-1424. Doi:10.1128/AEM.02508-06.
[33] Yin S X, Chen D, Chen L M, et al. Dissimilatory nitrate reduction to ammonium and responsible microorganisms in two Chinese and Australian paddy soils[J]. Soil Biology & Biochemistry, 2002, 34(8):1131-1137.
[34] Schmidt C S, Richardson D J, Baggs E M. Constraining the conditions conducive to dissimilatory nitrate reduction to ammonium in temperate arable soils [J]. Soil Biology & Biochemistry, 2011, 43:1607-1611. Doi:10.1016/j.soilbio.2011.02.015.
[35] Silver W L, Herman D J, Firestone M K. Dissimilatory nitrate reduction to ammonium in upland tropical forestsoils[J]. Ecology, 2001, 82(9): 2410-2416.Doi:10.2307/2679925. |