崇明东滩湿地土壤中Cr3+、Pb2+和Cd2+对 硝酸还原酶的Hormesis效应

印杰,范弟武,徐莎,韩建刚,朱咏莉,薛建辉

南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (02) : 21-26.

PDF(1508566 KB)
PDF(1508566 KB)
南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (02) : 21-26. DOI: 10.3969/j.issn.1000-2006.2016.02.004
专题报道(Ⅰ)

崇明东滩湿地土壤中Cr3+、Pb2+和Cd2+对 硝酸还原酶的Hormesis效应

  • 印 杰,范弟武,徐 莎,韩建刚*,朱咏莉,薛建辉
作者信息 +

Hormetic effects of Cr3+, Pb2+ and Cd2+ on nitrate reductase in soils in Chongming Dongtan wetlands

  • YIN Jie, FAN Diwu, XU Sha, HAN Jiangang*, ZHU Yongli, XUE Jianhui
Author information +
文章历史 +

摘要

为揭示典型滨海湿地土壤中重金属对土壤酶的低剂量兴奋效应(Hormesis),以崇明东滩湿地为对象,采集土壤样品,分别添加不同剂量的Cr3+(0、0.5、5.0、50.0、500.0、5 000.0 mg/kg)、Pb2+(0、10、30、50、100、300、500 mg/kg)以及Cd2+(0、0.1、1.0、5.0、10.0、100.0 mg/kg),观测土壤硝酸还原酶(NR)活性随时间(0、6、12、24、48、72、120 h)的变化特征。结果表明:与对照(重金属添加量0 mg/kg)相比较,低剂量Cr3+(0.5~5.0 mg/kg)、Pb2+(10.0 mg/kg)和Cd2+(0.1 mg/kg)均使NR活性显著升高(P<0.05),剂量效应曲线表现出明显的倒“U”形。这表明,Cr3+、Pb2+和Cd2+与湿地土壤NR活性之间存在Hormesis剂量效应关系。刺激效应出现的时间分别为培养后的6~72 h(Cr3+)、24~120 h(Pb2+)和6~48 h(Cd2+),幅度变化在56.4%~107.4%之间。因此,低剂量重金属对NR活性的刺激作用可能进一步影响湿地土壤硝态氮的还原过程,建议对崇明东滩湿地土壤中低微量重金属的环境影响进行系统评估。

Abstract

The objective of this study is to discover the hormetic effects(a biphasic dose-response characterized by a low dose benefit and a high dose inhibition)between heavy metals and soil enzyme in a typical wetland. Soil samples were taken from Chongming Dongtan, a wetland in the Yangtze River Delta of China. The activities of nitrate reductase(NR)in soils were examined at 0, 6, 12, 24, 48, 72 and 120 hrs incubation in the presence of Cr3+(0.0, 0.5, 5.0, 50.0, 500.0 and 5 000.0 mg/kg), Pb2+(0, 10, 30, 50, 100, 300 and 500 mg/kg)and Cd2+(0.0, 0.1, 1.0, 5.0, 10.0 and 100.00 mg/kg), respectively. Results showed that low dosages of Cr3+(0.5-5.0 mg/kg), Pb2+(10.0 mg/kg)and Cd2+(0.1 mg/kg)significantly enhanced NR activities comparing with that of the control(0.0 mg/kg metal ions added)(P<0.05), showing a typical inverted U-shaped dose-response curve, respectively, which indicated that a hormetic dose-response relationship existed between the three metals and NR in soils. The hormetic effects occurred at time of 6-72 h(Cr3+), 24-120 h(Pb2+)and 6-48 h(Cd2+)incubations, respectively, with the maximum stimulatory response of 56.4%-107.4% greater than the control. Therefore, the hormetic effects imply that the enhanced NR activities possibly affect nitrate reduction in wetland soils. It is very necessary to define and evaluate the effects of low dose heavy metals on soil functions in a wetland in the future.

引用本文

导出引用
印杰,范弟武,徐莎,韩建刚,朱咏莉,薛建辉. 崇明东滩湿地土壤中Cr3+、Pb2+和Cd2+对 硝酸还原酶的Hormesis效应[J]. 南京林业大学学报(自然科学版). 2016, 40(02): 21-26 https://doi.org/10.3969/j.issn.1000-2006.2016.02.004
YIN Jie, FAN Diwu, XU Sha, HAN Jiangang, ZHU Yongli, XUE Jianhui. Hormetic effects of Cr3+, Pb2+ and Cd2+ on nitrate reductase in soils in Chongming Dongtan wetlands[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2016, 40(02): 21-26 https://doi.org/10.3969/j.issn.1000-2006.2016.02.004
中图分类号: X53    S19   

参考文献

[1] 孟庆峰, 杨劲松, 姚荣江, 等. 单一及复合重金属污染对土壤酶活性的影响[J]. 生态环境学报, 2012,21(3):545-550. Doi:10.3969/j.issn.1674-5906.2012.03.025. Meng Q F, Yang J S, Yao R J, et al. Influence of single and combined pollutions of heavy metal on soil enzyme activity[J]. Ecology and Environment Sciences, 2012, 21(3):545-550.
[2] 杨志新, 刘树庆. 重金属Cd、Zn、Pb复合污染对土壤酶活性的影响[J]. 环境科学学报, 2001, 21(1):60-63. Yang Z X, Liu S Q. Effect of compound pollution of heavy metals on soil enzymic activities[J]. Acta Scientiae Circumstantiae, 2001, 21(1):60-63.
[3] Calabrese E J, Baldwin L A. Toxicology rethinks its central belief[J]. Nature, 2003, 421(6924): 691-692. Doi:10.1038/421691a.
[4] Calabrese E J, Baldwin L A. Hormesis: the dose-response revolution[J]. Annu Rev Pharmacol Toxicol, 2003, 43:175-197. Doi:10.1146/annurev.pharmtox.43.100901.140223.
[5] Calabrese E J, Baldwin L A. Defining hormesis[J]. Human Experimental Toxicology,2002,21:91-97.
[6] 陶功华.低剂量兴奋效应作用机制的研究进展[J].中山大学研究生学刊, 2007,28(1):18-21.
[7] 郭雪雁, 马义兵, 李波. 陆地生态系统中低剂量毒物刺激作用及拟合模型研究进展[J]. 生态学报, 2009,29(8):4408-4419. Guo X Y, Ma Y B, Li B. Advances in the effects, mechanisms and modeling of hormesis in terrestrial ecosystems[J]. Acta Ecologica Sinica, 2009, 29(8):4408-4419.
[8] 申开丽, 俞洁, 林广, 等. 低剂量刺激效应在污染物风险评价中的意义及前景[J]. 环境与职业医学,2012, 29(3):183-186. Shen K L, Yu J, Lin G, et al. Importance and potential application of hormetic effect in risk assessment of environmental pollutants[J]. Journal of Environmental & Occupational Medicine, 2012, 29(3):183-186.
[9] Calabrese E J, Blain R. The occurrence of hormetic dose responses in the toxicological literature, the hormesis database: an overview[J]. Toxicol Appl Pharmacol, 2005, 202(3): 289-301. Doi:10.1016/j.taap.2004.06.023.
[10] Calabrese E J, Blain R B. Hormesis and plant biology[J]. Environ Pollut, 2009, 157(1): 42-48.Doi:10.1016/j.envpol.2008.07.028.
[11] Calabrese E J, Iavicoli I, Calabrese V. Hormesis: why it is important to biogerontologists[J]. Biogerontology, 2012, 13(3): 215-235. Doi:10.1007/s10522-012-9374-7.
[12] Calabrese E J. Hormesis within a mechanistic context[J]. Homeopathy, 2015, 104(2): 90-96.Doi:10.1016/j.homp.2015.01.002.
[13] 王东红, 彭安, 王子健. 有毒物质低剂量刺激作用的研究进展[J]. 安全与环境学报, 2004, 4(1):18-21. Doi:10.3969/j.issn.1009-6094.2004.01.004. Wang D H, Peng A, Wang Z J. Advances in study of hormesis[J]. Journal of Safety and Environment, 2004, 4(1):18-21.
[14] Calabrese E J, Baldwin L A. Applications of hormesis in toxicology, risk assessment and chemotherapeutics [J]. Trends Pharmacol Sci, 2002,23(7):331-337.
[15] Stebbing A R. Hormesis—the stimulation of growth by low level of inhibitors [J]. The Science of the Total Environment,1982,22:213-234.
[16] Stebbing A R. Growth hormesis: a by-product of control[J]. Health Physics,1987,52(5):543-547.
[17] Calabrese E J. Overcompensation stimulation: a mechanism for hormetic effects[J]. Crit Rev Toxicol, 2001,31(4-5): 425-470. Doi:10.1080/20014091111749.
[18] 周平坤,隋建丽,杨素红.低剂量辐射对细胞DNA修复兴奋效应[J].中华放射医学与防护杂志,1997,17(3):155-158.
[19] 叶小明, 庾蕾, 庄志雄, 等. TaqMan-MGB探针检测人REV3L基因的毒物兴奋效应[J]. 深圳大学学报(理工版), 2005, 22(4):358-363. Doi:10.3969/j.issn.1000-2618.2005.04.017. Ye X M, Yu L, Zhuang Z X, et al. Hormesis of human rev3l gene induced by low dose of uv detected by taqman-mgb probe[J]. Journal of Shenzhen University(Sciences & Engineering), 2005, 22(4):358-363. Doi:10.3969/j.issn.1000-2618.2005.04.017.
[20] Acosta-Martínez V, Klose S. Soil Enzymes[J]. Encyclopedia of Soil Science, 2008,1: 1-5.
[21] 关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986:230-233.
[22] Girish S, Ajit V. Soil enzymology[M]. Berlin: Springer-Verlag Press, 2011:119-148.
[23] Nannipieri P, Ascher J, Ceccherini M T, et al. Microbial diversity and soil functions[J]. Eur J Soil Science, 2003,54(4): 655-670. Doi:10.1046/j.1351-0754.2003.0556.x.
[24] 赵春燕, 孙军德, 宁伟, 等. 重金属对土壤微生物酶活性的影响[J]. 土壤通报, 2001, 32(2):93-94. Zhao C Y, Sun J D, Ning W, et al. Effect of heavy metal on soil microbial enzyme activity[J]. Chinese Journal of Soil Science, 2001, 32(2):93-94.
[25] Shen G, Lu Y, Hong J. Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil[J]. Ecotoxicol Environ Saf, 2006, 63(3): 474-480. Doi:10.1016/j.ecoenv.2005.01.009.
[26] Shen G, Lu Y, Zhou Q, et al. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme[J]. Chemosphere, 2005, 61(8): 1175-1182. Doi:10.1016/j.chemosphere.2005.02.074.
[27] 刘茂松, 姜志林, 李湘萍. 长江中下游湿地系统的功能及其保护[J]. 南京林业大学学报(自然科学版),1999, 22(2):27-30. Doi:10.3969/j.issn.1000-2006.1999.02.006. Liu M S, Jiang Z L, Li X P. The function and protection of the wetland in the mid and lower reaches of changjiang river[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 1999, 22(2):27-30.
[28] 吕达, 郑祥民, 周立旻, 等. 崇明东滩湿地沉积物重金属污染的磁诊断[J]. 环境科学研究, 2007,20(6):38-43. Lyu D, Zheng X M, Zhou L M, et al. Magnetic diagnosis of heavy metal pollution in sediments of Chongming wetland[J]. Research of Environmental Sciences, 2007, 20(6):38-43.
[29] 康勤书,吴莹,张经等.崇明东滩湿地重金属分布特征及其污染状况[J].海洋学报,2003,25(2):1-7.
[30] 李亚娟,杨世伦.崇明东滩湿地的重金属积累效应及其对人类活动的响应[D].上海:华东师范大学,2012:3.
[31] 王红丽, 李艳丽, 张文佺, 等. 崇明东滩湿地土壤养分的分布特征及其环境效应[J]. 环境科学与技术,2010, 33(1):1-5. Doi:10.3969/j.issn.1003-6504.2010.01.001. Wang H L, Li Y L, Zhang W Q, et al. Distribution characteristics and environmental effect of wetland soil nutrients in chongming dongtan[J]. Environmental Science & Technology, 2010, 33(1):1-5.
[32] 鲍士旦.土壤农化分析[M].北京:农业出版社,2000:42-56.
[33] 国家环境保护局南京环境科学研究所.土壤环境质量标准:GB 15618—1995[S].北京:中国标准出版社,2012.
[34] Bibo L, Yan G, Bangding X, et al. A laboratory study on risk assessment of microcystin-RR in cropland[J]. J Environ Manage, 2008, 86(3): 566-574. Doi:10.1016/j.jenvman.2006.12.040.
[35] Jia L, He X, Chen W, et al. Hormesis phenomena under Cd stress in a hyperaccumulator—Lonicera japonica Thunb[J]. Ecotoxicology, 2013, 22(3): 476-485. Doi:10.1007/s10646-013-1041-5.
[36] Wang C R, Tian Y, Wang X R, et al. Hormesis effects and implicative application in assessment of lead-contaminated soils in roots of Vicia faba seedlings[J]. Chemosphere, 2010, 80(9): 965-971.Doi:10.1016/j.chemosphere.2010.05.049.
[37] Costantini D. Does hormesis foster organism resistance to extreme events?[J]. Frontiers in Ecology & the Environment, 2014, 12(12):209-210.

基金

收稿日期:2015-11-23 修回日期:2016-01-11
基金项目:国家自然科学基金项目(41471191,41375149); 国家林业公益性行业科研专项项目(201404305); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:印杰(1599167430@qq.com), 主要负责论文Cr3+、Pb2+效应部分实验及相关内容写作; 范弟武( 709719226@qq.com),主要负责论文Cd2+效应部分实验及相关内容写作。*通信作者:韩建刚(hanjiangang76@126.com),教授。
引文格式:印杰,范弟武,徐莎,等. 崇明东滩湿地土壤中Cr3+、Pb2+和Cd2+对硝酸还原酶的Hormesis效应[J]. 南京林业大学学报(自然科学版),2016,40(2):21-26.

PDF(1508566 KB)

Accesses

Citation

Detail

段落导航
相关文章

/