[1] 孙小燕, 汪江节, 王鹏. 泡沫金属孔结构对其力学性能的影响[J]. 安庆师范学院学报(自然科学版), 2006, 12(4):47-49. Doi:10.3969/j.issn.1007-4260.2006.04.017.
Sun X Y, Wang J J, Wang P. Effect of cellular metallic materials on mechanical property[J]. Journal of Anqing Teachers College(Natural Science Edition), 2006, 12(4):47-49.
[2] 李宇燕, 黄协清, 树学锋. 泡沫铝硅材料静动态压缩特性试验研究[J]. 机械工程材料, 2004, 28(10):38-40. Doi:10.3969/j.issn.1000-3738.2004.10.013.
Li Y Y, Huang X Q, Shu X F. Static and dynamic characteristics of foamed al-si[J]. Materials for Mechanical Engineering, 2004, 28(10):38-40.
[3] Ando Kosei, Onda Hitoshi. Mechanism for deformation of wood as a honeycomb structure i: effect of anatomy on the initial deformation process during radial compression[J]. J Wood Sci, 1999, 45(2): 120-126. Doi:10.1007/BF01192328.
[4] Tagarielli V L, Deshpande V S, Fleck N A. The high strain rate response of PVC foams and end-grain balsa wood[J]. Composites: Part B, 2008, 39: 83-91.Doi: 10.1016/j.compositesb.2007.02.005.
[5] Salimon A,Bréchet Y, Ashby M F, et al. Potential applications for steel and titanium metal foams[J]. Mechanical Behavior of Cellular Solids, 2005: 5793-5791.Doi: 10.1007/s10853-005-4993-x.
[6] Makaki A E, Clyne T W. The effect of cell wall microstructure on the deformation and fracture of aluminium based foams[J]. Acta Mater, 2001, 49: 1677-1686.Doi: 10.1016/S1359-6454(01)00072-6.
[7] Yang M Y, Huang J S. Elastic buckling of regular hexagonal honeycombs with plateau borders under biaxial compression[J]. Composite Structures, 2005, 71(2): 229-237.Doi: 10.1016/j.compstruct.2004.10.014.
[8] Liu Z F, Hao W Q, Xie J M, et al. Axial-impact buckling modes and energy absorption properties of thin-walled corrugated tubes with sinusoidal patterns[J]. Composites Part B: Engineering, 2015,94:410-423.Doi:10.1016/j.tws.2015.05.002.
[9] 赵钟声, 崔永志, 于海鹏,等. 木材薄板横纹压缩强化的微观结构变化[J]. 林业科学, 2010, 46(11): 124-130.
Zhao Z S, Cui Y Z, Yu H P, et al. Micro-structure examination of strengthened wood sheets by compression perpendicular to grain[J]. Scientia Silvae Sinicae, 2010, 46(11): 124-130.
[10] 赵钟声, 崔永志, 于海鹏, 等. 木材薄板横纹压缩强化的微观结构变化[J]. 林业科学, 2010, 46(11):124-130.
Zhao Z S, Cui Y Z, Yu H P, et al. Micro-structure examination of strengthened wood sheets by compression perpendicular to grain[J]. Scientia Silvae Sinicae, 2010, 46(11):124-130.
[11] 陶俊林, 余作生, 蒋平. 木材静压大变形本构关系研究[J]. 力学与实践, 2000, 22(5):25-27.Doi:10.3969/j.issn.1000-0879.2000.05.7.
Tao J L, Yu Z S, Jiang P. On the static constitutive relation of wood with large deformation[J].Mechanics in Engineering, 2000, 22(5):25-27.
[12] 钟卫洲, 宋顺成, 黄西成,等. 三种加载方向下云杉静动态力学性能研究[J]. 力学学报, 2011, 43(6):1141-1150.
Zhong W Z, Song S C, Huang X C, et al. Research on static and dynamic mechanical properties of spruce wood by thress loading directions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1141-1150.
[13] 刘云川, 窦金龙, 汪旭光. 冲击压缩载荷作用下杨木的力学性能研究[J]. 振动与冲击, 2009, 28(4):93-96. Doi:10.3969/j.issn.1000-3835.2009.04.021.
Liu Y C, Dou J L, Wang X G. Response of a chinese white poplar under impact compressive load: experiment and analysis[J]. Journal of Vibration and Shock, 2009, 28(4):93-96.
[14] Miksic A, Myntti M, Koivisto J, et al. Effect of fatigue and annual rings' orientation on mechanical properties of wood under cross-grain uniaxial compression[J]. Wood Science and Technology, 2013, 47(6):1117-1133.Doi: 10.1007/s00226-013-0561-8.
[15] 赵钟声. 木材横纹压缩变形恢复率的变化规律与影响机制[D].哈尔滨:东北林业大学, 2003.
Zhao Z S.The law and effective factors of resiliency ratio of wood compressive deformation in the transverse direction[D]. Harbin: Northeast Forestry University, 2003.
[16] Basta Craig Thomas, Gupta Rakesh, Leichti Robert, et al. Characterizing perpendicular-to-grain compression(C-perpendicular to)behavior in wood construction[J]. Holzforschung, 2011, 65(6):845-853.Doi: 10.1515/HF.2011.104.
[17] Craig T Basta, Rakesh Gupta, Robert J, et al. Applications of perpendicular-to-grain compression behavior in real wood construction assemblies[J]. Wood and Fiber Science, 2012, 44(2):155-167.
[18] Aimene Y E, Nairn J A. Simulation of transverse wood compression using a large-deformation,hyperelastic-plastic material model[J]. Wood Science and Technology, 2015, 49(1):21-39.Doi: 10.1007/s00226-014-0676-6.
[19] 国家技术监督局. GB/T 1939—2009木材横纹抗压试验方法[S]. 北京:中国标准出版社,1991.
[20]尹思慈. 木材学[M]. 北京: 中国林业出版社, 1996:170.
[21] 王保升, 张丽. 二次加载时蜂窝纸板的缓冲性能研究[J]. 包装工程, 2011, 32(15): 62-65.
Wang B S, Zhang L. Research on cushioning performance of honeycomb paperboard under the second Load[J]. Packaging Engineering, 2011, 32(15): 62-65.
[22] Schiffmann K I. Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models[J]. International Journal of Materials Research,2006,97(9):1199-1211.
[23] 涂道伍, 邵卓平. 基于Burger体的竹材横纹热压流变模型[J]. 南京林业大学学报(自然科学版), 2008, 32(2):67-70. Doi:10.3969/j.issn.1000-2006.2008.02.015.
Tu D W, Shao Z P. Rheology model of bamboo under transverse heat-compression based on burger-body[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2008, 32(2):67-70.
[24] 闫薇, 崔海星, 朱一辛. 竹材的拉伸短期蠕变行为及模拟[J]. 林业科技开发, 2013, 27(3):46-49.Doi:10.3969/j.issn.1000-8101.2013.03.012.
Yan W, Cui H X, Zhu Y X. Analysis and simulation of moso bamboo short-term tensile creep behaviour[J].China Forestry Science and Technology, 2013, 27(3):46-49.
[25] 刘乘,吴莎. 测试缓冲材料性能的方法及其分析[J]. 包装工程, 2011, 32(13): 25-25.
Liu C, Wu S. Cushioning material properties testing methods and analysis[J]. Packaging Engineering, 2011, 32(13): 25-25. |