樟子松木材横纹压缩时黏弹性与能量吸收特性研究

徐朝阳,李健昱,翟胜丞,徐德良

南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (02) : 127-131.

PDF(1791075 KB)
PDF(1791075 KB)
南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (02) : 127-131. DOI: 10.3969/j.issn.1000-2006.2016.02.021
研究论文

樟子松木材横纹压缩时黏弹性与能量吸收特性研究

  • 徐朝阳,李健昱,翟胜丞,徐德良
作者信息 +

Viscoelastic and energy absorption characteristics of scotch pine wood in across-compression

  • XU Zhaoyang, LI Jianyu, ZHAI Shengcheng, XU Deliang
Author information +
文章历史 +

摘要

以樟子松为研究对象,利用横纹压缩蠕变试验研究其木材吸能特性与黏弹性的关系。结果表明:樟子松木材在静态横纹压缩径向加载时,存在明显三段式曲线,第2阶段平台区体现了良好的能量吸收特性; 樟子松木材横纹压缩时的短期蠕变行为可用四元件流变模型进行描述; 随着应力水平的上升,樟子松木材的瞬间弹性模量和Kelvin模型中的延时弹性模量及黏性系数均呈上升趋势,而Maxwell模型中的黏性系数和松弛时间呈明显下降趋势; 在蠕变时,随着应力水平的上升,樟子松木材的能量吸收能力增加且缓冲系数呈下降趋势。

Abstract

This paper investigated the relationship between viscoelasticity and energy absorption characteristics of scotch pine wood by across-compression creep tests. The results showed that the stress-strain curve occupied three typical regions when scotch pine was across compressed with load in radial direction. The second region in the stree-strain curve, a plateau, embodied good characteristics of energy absorption. A four-elements model could be used to study the creep performance of scotch pine in short term. When the stress increased, the instantaneous elastic modulus, delayed elastic modulus and glutinous coefficient of the Kelvin model all increased. On the contrary, the glutinous coefficient of the Maxwell model and relaxation time decreased with increasing stress level. In creep test, when the stress levels increased, the energy absorption ability of scotch pine increased correspondingly, but the cushioning coefficient decreased.

引用本文

导出引用
徐朝阳,李健昱,翟胜丞,徐德良. 樟子松木材横纹压缩时黏弹性与能量吸收特性研究[J]. 南京林业大学学报(自然科学版). 2016, 40(02): 127-131 https://doi.org/10.3969/j.issn.1000-2006.2016.02.021
XU Zhaoyang, LI Jianyu, ZHAI Shengcheng, XU Deliang. Viscoelastic and energy absorption characteristics of scotch pine wood in across-compression[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2016, 40(02): 127-131 https://doi.org/10.3969/j.issn.1000-2006.2016.02.021
中图分类号: S781.2   

参考文献

[1] 孙小燕, 汪江节, 王鹏. 泡沫金属孔结构对其力学性能的影响[J]. 安庆师范学院学报(自然科学版), 2006, 12(4):47-49. Doi:10.3969/j.issn.1007-4260.2006.04.017. Sun X Y, Wang J J, Wang P. Effect of cellular metallic materials on mechanical property[J]. Journal of Anqing Teachers College(Natural Science Edition), 2006, 12(4):47-49.
[2] 李宇燕, 黄协清, 树学锋. 泡沫铝硅材料静动态压缩特性试验研究[J]. 机械工程材料, 2004, 28(10):38-40. Doi:10.3969/j.issn.1000-3738.2004.10.013. Li Y Y, Huang X Q, Shu X F. Static and dynamic characteristics of foamed al-si[J]. Materials for Mechanical Engineering, 2004, 28(10):38-40.
[3] Ando Kosei, Onda Hitoshi. Mechanism for deformation of wood as a honeycomb structure i: effect of anatomy on the initial deformation process during radial compression[J]. J Wood Sci, 1999, 45(2): 120-126. Doi:10.1007/BF01192328.
[4] Tagarielli V L, Deshpande V S, Fleck N A. The high strain rate response of PVC foams and end-grain balsa wood[J]. Composites: Part B, 2008, 39: 83-91.Doi: 10.1016/j.compositesb.2007.02.005.
[5] Salimon A,Bréchet Y, Ashby M F, et al. Potential applications for steel and titanium metal foams[J]. Mechanical Behavior of Cellular Solids, 2005: 5793-5791.Doi: 10.1007/s10853-005-4993-x.
[6] Makaki A E, Clyne T W. The effect of cell wall microstructure on the deformation and fracture of aluminium based foams[J]. Acta Mater, 2001, 49: 1677-1686.Doi: 10.1016/S1359-6454(01)00072-6.
[7] Yang M Y, Huang J S. Elastic buckling of regular hexagonal honeycombs with plateau borders under biaxial compression[J]. Composite Structures, 2005, 71(2): 229-237.Doi: 10.1016/j.compstruct.2004.10.014.
[8] Liu Z F, Hao W Q, Xie J M, et al. Axial-impact buckling modes and energy absorption properties of thin-walled corrugated tubes with sinusoidal patterns[J]. Composites Part B: Engineering, 2015,94:410-423.Doi:10.1016/j.tws.2015.05.002.
[9] 赵钟声, 崔永志, 于海鹏,等. 木材薄板横纹压缩强化的微观结构变化[J]. 林业科学, 2010, 46(11): 124-130. Zhao Z S, Cui Y Z, Yu H P, et al. Micro-structure examination of strengthened wood sheets by compression perpendicular to grain[J]. Scientia Silvae Sinicae, 2010, 46(11): 124-130.
[10] 赵钟声, 崔永志, 于海鹏, 等. 木材薄板横纹压缩强化的微观结构变化[J]. 林业科学, 2010, 46(11):124-130. Zhao Z S, Cui Y Z, Yu H P, et al. Micro-structure examination of strengthened wood sheets by compression perpendicular to grain[J]. Scientia Silvae Sinicae, 2010, 46(11):124-130.
[11] 陶俊林, 余作生, 蒋平. 木材静压大变形本构关系研究[J]. 力学与实践, 2000, 22(5):25-27.Doi:10.3969/j.issn.1000-0879.2000.05.7. Tao J L, Yu Z S, Jiang P. On the static constitutive relation of wood with large deformation[J].Mechanics in Engineering, 2000, 22(5):25-27.
[12] 钟卫洲, 宋顺成, 黄西成,等. 三种加载方向下云杉静动态力学性能研究[J]. 力学学报, 2011, 43(6):1141-1150. Zhong W Z, Song S C, Huang X C, et al. Research on static and dynamic mechanical properties of spruce wood by thress loading directions[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1141-1150.
[13] 刘云川, 窦金龙, 汪旭光. 冲击压缩载荷作用下杨木的力学性能研究[J]. 振动与冲击, 2009, 28(4):93-96. Doi:10.3969/j.issn.1000-3835.2009.04.021. Liu Y C, Dou J L, Wang X G. Response of a chinese white poplar under impact compressive load: experiment and analysis[J]. Journal of Vibration and Shock, 2009, 28(4):93-96.
[14] Miksic A, Myntti M, Koivisto J, et al. Effect of fatigue and annual rings' orientation on mechanical properties of wood under cross-grain uniaxial compression[J]. Wood Science and Technology, 2013, 47(6):1117-1133.Doi: 10.1007/s00226-013-0561-8.
[15] 赵钟声. 木材横纹压缩变形恢复率的变化规律与影响机制[D].哈尔滨:东北林业大学, 2003. Zhao Z S.The law and effective factors of resiliency ratio of wood compressive deformation in the transverse direction[D]. Harbin: Northeast Forestry University, 2003.
[16] Basta Craig Thomas, Gupta Rakesh, Leichti Robert, et al. Characterizing perpendicular-to-grain compression(C-perpendicular to)behavior in wood construction[J]. Holzforschung, 2011, 65(6):845-853.Doi: 10.1515/HF.2011.104.
[17] Craig T Basta, Rakesh Gupta, Robert J, et al. Applications of perpendicular-to-grain compression behavior in real wood construction assemblies[J]. Wood and Fiber Science, 2012, 44(2):155-167.
[18] Aimene Y E, Nairn J A. Simulation of transverse wood compression using a large-deformation,hyperelastic-plastic material model[J]. Wood Science and Technology, 2015, 49(1):21-39.Doi: 10.1007/s00226-014-0676-6.
[19] 国家技术监督局. GB/T 1939—2009木材横纹抗压试验方法[S]. 北京:中国标准出版社,1991.
[20]尹思慈. 木材学[M]. 北京: 中国林业出版社, 1996:170.
[21] 王保升, 张丽. 二次加载时蜂窝纸板的缓冲性能研究[J]. 包装工程, 2011, 32(15): 62-65. Wang B S, Zhang L. Research on cushioning performance of honeycomb paperboard under the second Load[J]. Packaging Engineering, 2011, 32(15): 62-65.
[22] Schiffmann K I. Nanoindentation creep and stress relaxation tests of polycarbonate: Analysis of viscoelastic properties by different rheological models[J]. International Journal of Materials Research,2006,97(9):1199-1211.
[23] 涂道伍, 邵卓平. 基于Burger体的竹材横纹热压流变模型[J]. 南京林业大学学报(自然科学版), 2008, 32(2):67-70. Doi:10.3969/j.issn.1000-2006.2008.02.015. Tu D W, Shao Z P. Rheology model of bamboo under transverse heat-compression based on burger-body[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2008, 32(2):67-70.
[24] 闫薇, 崔海星, 朱一辛. 竹材的拉伸短期蠕变行为及模拟[J]. 林业科技开发, 2013, 27(3):46-49.Doi:10.3969/j.issn.1000-8101.2013.03.012. Yan W, Cui H X, Zhu Y X. Analysis and simulation of moso bamboo short-term tensile creep behaviour[J].China Forestry Science and Technology, 2013, 27(3):46-49.
[25] 刘乘,吴莎. 测试缓冲材料性能的方法及其分析[J]. 包装工程, 2011, 32(13): 25-25. Liu C, Wu S. Cushioning material properties testing methods and analysis[J]. Packaging Engineering, 2011, 32(13): 25-25.

基金

收稿日期:2015-06-23 修回日期:2015-09-24
基金项目:江苏省自然科学基金项目(BK20130971, BK20140981); 国家自然科学基金项目(31300483, 31400496); 江苏省苏北科技发展计划(BN2013003)
第一作者:徐朝阳(hughxzy@163.com),副教授。
引文格式:徐朝阳,李健昱,翟胜丞,等. 樟子松木材横纹压缩时黏弹性与能量吸收特性研究[J]. 南京林业大学学报(自然科学版),2016,40(2):127-131.

PDF(1791075 KB)

Accesses

Citation

Detail

段落导航
相关文章

/