[1] Lei S, Guo Q, Zhang D, et al. Preparation and properties of the phenolic foams with controllable nanometer pore structure[J]. Journal of Applied Polymer Science, 2010,117(6):3545-3550.Doi: 10.1002/app.32280.
[2] Shen H, Lavoie A J, Nutt S R. Enhanced peel resistance of fiber reinforced phenolic foams[J]. Composites Part A: Applied Science and Manufacturing, 2003,34(10):941-948.Doi:10.1016/S1359-835X(03)00210-0.
[3] Shen H, Nutt S. Mechanical characterization of short fiber reinforced phenolic foam[J]. Composites Part A: Applied Science and Manufacturing,2003,34(9):899-906.Doi:10.1016/S1359-835X(03)00136-2.
[4] Yang H, Wang X, Yuan H, et al. Fire performance and mechanical properties of phenolic foams modified by phosphorus-containing polyethers[J]. Journal of Polymer Research, 2012,19(3):1-10.Doi:10.1007/s10965-012-9831-7.
[5] Auad M L, Zhao L, Shen H, et al. Flammability properties and mechanical performance of epoxy modified phenolic foams[J]. Journal of Applied Polymer Science, 2007,104(3):1399-1407.Doi:10.1002/app.24405.
[6] Wang L, Jiang J, Jiang P, et al. Synthesis, characteristic of a novel flame retardant containing phosphorus, silicon and its application in ethylene vinyl-acetate copolymer(EVM)rubber[J]. Journal of Polymer Research, 2010,17(6):891-902.Doi:10.1007/s10965-009-9381-9.
[7] Wu K, Song L, Wang Z, et al. Preparation and characterization of double shell microencap-sulated ammonium polyphosphate and its flame retardance in polypropylene[J]. Journal of Polymer Research, 2009,16(3):283-294.Doi:10.1007/s10965-008-9228-9.
[8] Wu K, Wang Z, Hu Y. Microencapsulated ammonium polyphosphate with urea-melamine-formaldehyde shell: preparation, characterization, and its flame retardance in polypropylene[J]. Polymers for Advanced Technologies, 2008,19(8):1118-1125.Doi: 10.1002/pat.1095.
[9] Camino G, Grassie N, McNeill I. Influence of the fire retardant, ammonium polyphosphate, on the thermal degradation of poly(methyl methacrylate)[J]. Journal of Polymer Science: Polymer Chemistry Edition, 1978,16(1):95-106.Doi:10.1002/pol.1978.170160110.
[10] Mathan N D, Arunjunairaj M, Rajkumar T, et al. Thermal degradation of pentaerythritol phosphate alcohol: TG and TG-MS studies[J]. Journal of Thermal Analysis and Calorimetry, 2012,110(3):1133-1141.Doi:10.1007/s10973-011-2015-6.
[11] Allen D W, Anderton E C, Shiel L E. Structure-property relationships in intumescent fire-retardant derivatives of 4-hydroxymethyl-2, 6, 7-trioxa-1-phosphabicyclo [2, 2, 2] octane-1-oxide[J]. Polymer Degradation and Stability, 1994,45(3):399-408.Doi:10.1016/0141-3910(94)90210-0.
[12] Hu X P, Li Y L, Wang Y Z. Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene[J]. Macro-molecular Materials and Engineering, 2004,289(2):208-212.Doi:10.1002/mame.200300189.
[13] Wescott J L D. Mujsce W A M, Linxwiler P A. Mechanistic studies on the role of copper-and molybdenum-containing species as flame and smoke suppressants for poly(vinyl chloride)[J]. Journal of Analytical and Applied Pyrolysis, 2002,8:163-172.Doi:10.1016/0165-2370(85)80023-1.
[14] Li B, Xu M. Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene[J]. Polymer Degradation and Stability, 2006,91(6):1380-1386.Doi:10.1016/j.poly-mdegradstab.2005.07.020.
[15] Liu Y, Yi J, Cai X. The investigation of intumescent flame-retarded polypropylene using poly(hexamethylene terephthalamide)as carbonization agent[J]. Journal of Thermal Analysis and Calorimetry, 2012,107(3):1191-1197.Doi:10.1007/s10973-011-1874-1.
[16] Zhang Q, Chen Y. Synergistic effects of ammonium polyphosphate/melamine intumescent system with macromolecular char former in flame-retarding polyoxymethylene[J]. Journal of Polymer Research, 2011,18(2):293-303.Doi:10.1007/s10965-010-9418-0.
[17] 李斌, 孙才英, 张秀成. 用锥形量热仪研究聚乙烯膨胀阻燃体系的燃烧性[J]. 高等学校化学学报, 1999,146:149.Doi:CNKI:SUN:GDXH.0.1999-01-034.
[18] Ribeiro S P S, Estevão L R M, Nascimento R S V. Brazilian clays as synergistic agents in an ethylenic polymer matrix containing an intumescent formulation[J]. Journal of Thermal Analysis and Calorimetry, 2007,87(3):661-665.Doi:10.1007/s10973-006-7872-z.
[19] Wang X L, Wu L L, Li J. Synergistic flame retarded poly(methyl methacrylate)by nano-ZrO2 and triphenylphosphate[J]. Journal of Thermal Analysis and Calorimetry, 2011,103(2):741-746.Doi:10.1007/s10973-010-1050-z.
[20] Yi J, Liu Y, Cai X. The synergistic effect of adjuvant on the intumescent flame-retardant ABS with a novel charring agent[J]. Journal of Thermal Analysis and Calorimetry, 2013,113(2):753-761.Doi:10.1007/s10973-012-2802-8.
[21] Yi J, Yin H, Cai X. Effects of common synergistic agents on intumescent flame retardant polypropylene with a novel charring agent[J]. Journal of Thermal Analysis and Calorimetry, 2013,111(1):725-734.Doi:10.1007/s10973-012-2211-z.
[22] Yin H Q, Yuan D D, Cai X F. Red phosphorus acts as second acid source to form a novel intumescent-contractive flame-retardant system on ABS[J]. Journal of Thermal Analysis and Calorimetry, 2013,111(1):499-506.Doi:10.1007/s10973-012-2536-7.
[23] Holdsworth A, Horrocks A, Kandola B, et al. The potential of metal oxalates as novel flame retardants and synergists for engineering polymers[J]. Polymer Degradation and Stability, 2014,110:290-297.Doi:10.1016/j.polymdegradstab.2014.09.007.
[24] Chen X, Sun T, Cai X. The investigation of intumescent flame-retarded ABS using zinc borate as synergist[J]. Journal of Thermal Analysis and Calorimetry, 2014,115(1):185-191.Doi:10.1007/s10973-013-3302-1.
[25] Ma Y, Wang J, Xu Y, et al. Preparation and characterization of phenolic foams with eco-friendly halogen-free flame retardant[J]. Journal of Thermal Analysis and Calorimetry, 2013,114(3):1143-1151.Doi:10.1007/s10973-013-3180-6.
[26] Felix T, Pinto O P, Peres A, et al. Comparison of bismuth trioxide and antimony trioxide as synergists with decabromodiphenyl ether in flame retardancy of high-impact polystyrene[J]. Journal of Fire Sciences, 2012,30(6):566-574.Doi: 10.1177/0734904112456004.
[27] Liu Y, Wang Z, Wang Q. Effects of magnesium hydroxide and its synergistic systems on the flame retardance of polyformaldehyde[J]. Journal of Applied Polymer Science, 2012,125(2):968-974.Doi:10.1002/app.36330.
[28] 王萃萃, 戴震, 许戈文. 硬段阻燃改性水性聚氨酯的研究[J]. 中国涂料, 2010,25(8):57-60.Doi:10.13531/j.cnki.china.coat-ings.2010.08.10.
Wang C C,Dai Z,Xu G W. Research on hard-segment flame-retardant modification of waterborne polyurethane[J]. China Coatings,2010,25(8):57-60.
[29] 欧育湘,李建军. 阻燃剂[M]. 北京: 化学工业出版社, 2006.
[30] 欧育湘. 实用阻燃技术[M]. 北京: 化学工业出版社, 2002.
[31] 田春明, 谢吉星. 金属氧化物对阻燃聚丙烯热降解动力学的影响[J]. 山西大学学报(自然科学版), 2003,26(3):231-234.Doi:10.13451/j.cnki.shanxi.univ(nat.sci.).2003.03.011.
Tian C M, Xie J X. The effect of metal oxides on thermal oxidative degradation kinetics of intumescent flame retardant polypropylene[J]. Journal of Shanxi University(Nature Science Edition),2003,26(3):231-234.
[32] ISO 5660-1. Reaction-to-fire tests—Heat release, smoke production and mass loss rate—Part 1: Heat release rate(cone calorimeter method)[S/OL].Doi:http://www.iso.ch.
[33] 李斌, 王建祺. 聚合物材料燃烧性和阻燃性的评价—锥形量热仪(CONE)法[J]. 高分子材料科学与工程, 1998,14(5):15-19.Doi:CNKI:SUN:GFZC.0.1998-05-003.
Li B, Wang J Q. Utilization of cone calorimeter for the appraisal of the flammability and flame retardancy of polymeric materials [J]. Polymer Materials Science & Engineering, 1998, 14(5):15-19.
[34] 孙杰, 焦传梅. 氧化锌与膨胀型阻燃剂对聚丙烯的协效阻燃[J]. 青岛科技大学学报(自然科学版), 2012,33(2):172-176.Doi:CNKI:SUN:QDHG.0.2012-02-015.
Sun J, Jiao C M. Synergistic flame resistant effect of zinc oxide and intumescent flame retardant in poly propylene[J]. Journal of Qingdao University Science and Technology(Natural Science Edition), 2012, 33(2):172-176.
[35] Lewin M, Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds[J]. Polymers for Advanced Technologies, 2003,14(1):3-11.Doi:10.1002/pat.265.
[36] 邓小波, 王继刚, 刘白玲. 锥形量热仪在饰面型防火涂料防火性能研究中的应用[J]. 涂料工业, 2011,41(12):50-53.Doi:CNKI:SUN:TLGY.0.2011-12-013.
Deng X B, Wang J G, Liu B L. Application of cone calorimeter in the study of combustion properties on finishing fire retardant paint [J]. Paint & Coatings Industry,2011,41(12):50-53.
[37] Almeras X, Le Bras M, Hornsby P, et al. Effect of fillers on the fire retardancy of intumescent polypropylene compounds[J]. Polymer Degradation and Stability, 2003,82(2):325-331.Doi:10.1016/S0141-3910(03)00187-3.
[38] Manfredi L B, Rodríguez E S, Wladyka-Przybylak M, et al. Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres[J]. Polymer Degradation and Stability, 2006,91(2):255-261.Doi:10.1016/j.polymdegradstab.2005.05.003.
[39] Zhu X, Pan Q, Xu H, et al. Effects of coal and ammonium polyphosphate on thermal degradation and flame retardancy of polyethylene terephthalate[J]. Journal of Polymer Research, 2010,17(5):621-629.Doi:10.1007/s10965-009-9350-3.
[40] Yeh J, Hsieh S, Cheng Y, et al. Combustion and smoke emission properties of poly(ethylene terephthalate)filled with phosphorous and metallic oxides[J]. Polymer Degradation and Stability, 1998,61(3):399-407.Doi:10.1016/S0141-3910(97)00225-5.
[41] Zhang J, Silcock G, Shields T. Study of the combustion and fire retardancy of polyacrylonitrile and its copolymers by using cone calorimetry[J]. Journal of Fire Sciences, 1995,13(2):141-161.Doi:10.1177/073490419501300204.
[42] Kroenke W J. Metal smoke retarders for poly(vinyl chloride)[J]. Journal of Applied Polymer Science, 1981,26(4):1167-1190.Doi:10.1002/app.1981.070260411.
[43] Fang Y, Wang Q, Bai X, et al. Thermal and burning properties of wood flour-poly(vinyl chloride)composite[J]. Journal of Thermal Analysis and Calorimetry. 2012,109(3):1577-1585.Doi:10.1007/s10973-011-2071-y. |