[1] Nakamura T, Song I J, Fukuda T, et al. Characterization of TrcMADS1 gene of Trillium camtschatcense(Trilliaceae)reveals functional evolution of the SOC1/TM3-like gene family[J]. J Plant Res, 2005, 118(3):229-234. Doi:10.1007/s10265-005-0215-5.
[2] Simpson G G, Dean C. Arabidopsis, the rosetta stone of flowering time[J]. Science, 2002, 296(5566):285-289. Doi:10.1126/science.296.5566.285.
[3] Lee H. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis[J]. Genes & Development, 2000, 14(18):2366-2376. Doi:10.1101/gad.813600.
[4] Samach A, Onouchi H, Gold S E, et al. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis[J]. Science, 2000, 288(5471):1613-1616.
[5] Gu Q, Ferrándiz C, Yanofsky M F, et al. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development[J]. Development, 1998, 125(8):1509-1517.
[6] Onouchi H, Igeño M I, Périlleux C, et al. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes[J]. Plant Cell, 2000, 12(6):885-900.
[7] Melzer S,Lens F, Gennen J, et al. Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana[J]. Nature Genetics, 2008, 40(12):1489-1492. Doi:10.1038/ng.253
[8] Hepworth S R, Valverde F, Ravenscroft D, et al. Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs[J]. EMBO J, 2002, 21(16):4327-4337.
[9] Michaels S D. Integration offlowering signals in winter-annual Arabidopsis[J]. Plant Physiology, 2005, 137(1):149-156. Doi:10.1104/pp.104.052811.
[10] Moon J, Lee H, Kim M, et al. Analysis of flowering pathway integrators in Arabidopsis[J]. Plant Cell Physiol, 2005, 46(2):292-299. Doi:10.1093/pcp/pci024.
[11] Yoo S K, Chung K S, Kim J, et al. CONSTANS activates SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 through FLOWERING LOCUS T to promote flowering in Arabidopsis[J]. Plant Physiol, 2005, 139(2):770-778. Doi:10.1104/pp.105.066928.
[12] Schwarz-Sommer Z, Huijser P, Nacken W, et al. Genetic control of flower development by homeotic genes in Antirrhinum majus[J]. Science, 1990, 250(4983):931-936. Doi:10.1126/science.250.4983.931.
[13] Borner R, Kampmann G, Chandler J, et al. A MADS domain gene involved in the transition to flowering in Arabidopsis[J]. Plant J, 2000, 24(5):591-599.
[14] Michaels S D, Amasino R M. Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization[J]. Plant Cell, 2001, 13(4):935-941.
[15] Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants[J]. Gene, 2005, 347(2):183-198. Doi:10.1016/j.gene.2004.12.014.
[16] Smaczniak C,Immink R G H, Muino J M, et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development[J]. Proceedings of the National Academy of Sciences, 2012, 109(5):1560-1565. Doi:10.1073/pnas.1112871109.
[17] Krizek B A, Meyerowitz E M. Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins[J]. Proc Natl Acad Sci USA, 1996, 93(9):4063-4070.
[18] 周佳平, 林新春, 徐英武. 拟南芥SEPALLATA3蛋白质原核表达与纯化[J]. 浙江农林大学学报, 2014, 31(1):14-18. Doi:10.11833/j.issn.2095-0756.2014.01.003.
Zhou J P, Lin X C, Xu Y W. Arabidopsis thaliana sepallata 3 protein in a prokaryotic system[J]. Journal of Zhejiang A & F University, 2014, 31(1):14-18.
[19] 马腾飞, 林新春. 植物SOC1/AGL20基因研究进展[J]. 浙江农林大学学报, 2013, 30(6):930-937.
Ma T F, Lin X C. Advanced research on SOC1/AGL20 genes in plants: a review[J]. Journal of Zhejiang A & F University, 2013, 30(6):930-937.
[20] Corbesier L, Coupland G. The quest for florigen: a review of recent progress[J]. J Exp Bot, 2006, 57(13):3395-3403. Doi:10.1093/jxb/erl095.
[21] Lee J, Oh M, Park H,et al. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy[J]. Plant J, 2008, 55(5):832-843. Doi:10.1111/j.1365-313X.2008.03552.x.
[22] Lee S, Kim J, Han J J,et al. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20(SOC1/AGL20)ortholog in rice[J]. Plant J, 2004, 38(5):754-764. Doi:10.1111/j.1365-313X.2004.02082.x.
[23] Melzer R, WangY Q, Theissen G. The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower[J]. Semin Cell Dev Biol, 2010, 21(1):118-128. Doi:10.1016/j.semcdb.2009.11.015.
[24] Pollock R, Treisman R. Human SRF-related proteins: DNA-binding properties and potential regulatory targets[J]. Genes Dev, 1991, 5(12A):2327-2341.
[25] Huang H, Tudor M, Su T,et al. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation[J]. Plant Cell, 1996, 8(1):81-94. Doi:10.1105/tpc.8.1.81.
[26] Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs[J]. Nature, 2001, 409(6819):525-529. Doi:10.1038/35054083.
[27] Vandenbussche M. Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations[J]. Nucleic Acids Research, 2003, 31(15):4401-4409. Doi:10.1093/nar/gkg642.
[28] Fan H Y, Hu Y, Tudor M, et al. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins[J]. Plant J, 1997, 12(5):999-1010.
[29] Pelaz S,Gustafson-Brown C, Kohalmi S E, et al. APETALA1 and SEPALLATA3 interact to promote flower development[J]. Plant J, 2001, 26(4):385-394.
[30] Riechmann J L, Krizek B A, Meyerowitz E M. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS[J]. Proc Natl Acad Sci USA, 1996, 93(10):4793-4798.
[31] Adamczyk B J, Fernandez D E. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis[J]. Plant Physiol, 2009, 149(4):1713-1723. Doi:10.1104/pp.109.135806.
[32] Adamczyk B J, Lehti-Shiu M D, Fernandez D E. The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis[J]. Plant J, 2007, 50(6):1007-1019. Doi:10.1111/j.1365-313X.2007.03105.x.
[33] Hartmann U, Höhmann S, Nettesheim K, et al. Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis[J]. Plant J, 2000, 21(4):351-360.
[34] Tao Z, Shen L, Liu C,et al. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis[J]. Plant J, 2012, 70(4):549-561. Doi:10.1111/j.1365-313X.2012.04919.x. |