高频度模拟酸雨胁迫条件下菲白竹的光合响应

何亚飞,张珊珊,孙鑫,王涛,代丽,谢寅峰

南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (04) : 49-55.

PDF(1857420 KB)
PDF(1857420 KB)
南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (04) : 49-55. DOI: 10.3969/j.issn.1000-2006.2016.04.008
研究论文

高频度模拟酸雨胁迫条件下菲白竹的光合响应

  • 何亚飞,张珊珊,孙 鑫,王 涛,代 丽,谢寅峰*
作者信息 +

Response of photosynthetic characteristics of Pleioblastus fortunei to high frequent simulated acid rain

  • HE Yafei, ZHANG Shanshan, SUN Xin, WANG Tao, DAI Li, XIE Yinfeng*
Author information +
文章历史 +

摘要

为了探讨竹类植物对高频度酸雨胁迫的光合响应特性及其机制,以园林观赏竹种菲白竹(Pleioblastus fortunei)为材料,通过模拟不同强度酸雨(pH=2.0、3.0、4.0)高频度处理,研究其对叶绿素含量、光合作用日变化及叶绿素荧光特性的影响。结果表明:各胁迫处理组均导致菲白竹叶片叶绿素相对含量下降,酸度越强,降幅越大。酸雨胁迫导致光合速率日变化从对照的“单峰型”向“双峰型”转变,呈现明显的“午休”现象。随着胁迫强度的增加,净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、气孔限制值(Ls)均呈下降趋势,而胞间二氧化碳浓度(Ci)总体上则呈上升趋势,表明酸雨胁迫抑制光合速率主要由非气孔限制所致。不同强度的酸雨胁迫均使菲白竹PSⅡ最大光化学效率(Fv/Fm)、PSⅡ潜在活性(Fv/Fo)、PSⅡ有效光化学效率(Fv'/Fm')、PSⅡ实际光化学效率(ΦPSⅡ)、光化学淬灭系数(qP)显著降低,而非光化学淬灭系数(qNPQ)显著增加。经过1个多月的恢复期,pH 4.0处理组各荧光参数恢复趋势明显; 而pH 2.0处理组则无法恢复,表明菲白竹对pH 4.0的酸雨胁迫处理表现出较强的自我修复能力。其中,qNPQ的增强可能是菲白竹防御酸胁迫下光破坏的一种重要机制。

Abstract

In order to explore the photosynthetic response characteristic of bamboos to the high frequency of acid rain stress, the relative content of chlorophyll, the diurnal variation of photosynthesis and chlorophyll fluorescence in the leaves of Pleioblastus fortunei, an ornamental bamboo species were determined by foliar spraying with simulated acid rain(SAR)in different intensity of pH(2.0,3.0,4.0). The results showed that treating with different intensity of SAR could result in the decrease of the relative content of chlorophy. The lower was the pH value, was the greater the decrease. The acid rain stress led to diurnal variation changing from the control “single peak” to “bimodal”, which present obviously photosynthetic depression at midday. With the increase of stress intensity, net photosynthetic rate(Pn), stomatal conductance(Gs), transpiration rate(Tr)and stomatal limitation(Ls)decreased. while, the increasement of the intercellular CO2 concentration(Ci)indicated that the decline of photosynthetic rate was mainly caused by non-stomatal limiting factor under acid rain stress. In addition, the determination of fluorescence parameters showed that SAR of different intensity made PSⅡ photochemical efficiency(Fv/Fm), the largest PSⅡ activity of potential(Fv/Fo), PSⅡ photochemical efficiency(Fv'/Fm'), PSⅡ photochemical efficiency(ΦPSⅡ), photochemical quenching(qP)significantly lower, but the non-photochemical quenching(NPQ)was significantly increased. After the recovery of a month, the fluorescence parameters of P.fortunei under pH 4.0 treatment could mostly recover; However, all of P.fortunei under pH 2.0 can't recover. It shows that P. fortunei treated with SAR of pH 4.0 has a strong ability to repair itself, but with pH 2.0, it can't recover through self-regulation. The enhancement of NPQ in P. fortunei might be a vital mechanism for the resistence to light under the acid stress.

引用本文

导出引用
何亚飞,张珊珊,孙鑫,王涛,代丽,谢寅峰. 高频度模拟酸雨胁迫条件下菲白竹的光合响应[J]. 南京林业大学学报(自然科学版). 2016, 40(04): 49-55 https://doi.org/10.3969/j.issn.1000-2006.2016.04.008
HE Yafei, ZHANG Shanshan, SUN Xin, WANG Tao, DAI Li, XIE Yinfeng. Response of photosynthetic characteristics of Pleioblastus fortunei to high frequent simulated acid rain[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2016, 40(04): 49-55 https://doi.org/10.3969/j.issn.1000-2006.2016.04.008
中图分类号: Q945.78   

参考文献

[1] Ramlall C, Varghese B, Ramdhani S, et al. Effects of simulated acid rain on germination, seedling growth and oxidative metabolism of recalcitrant-seeded Trichilia dregeana grown in its natural seed bank[J]. Physiol Plant, 2015, 153(1):149-160. Doi:10.1111/ppl.12230.
[2] Qiu Q, Wu J, Liang G, et al. Effects of simulated acid rain on soil and soil solution chemistry in a monsoon evergreen broad-leaved forest in southern China[J]. Environ Monit Assess, 2015, 187(5):272. Doi:10.1007/s10661-015-4492-8.
[3] Abbasi T, Poornima P, Kannadasan T, et al. Acid rain: past, present, and future[J]. Ijee, 2013, 5(3):229. Doi:10.1504/ijee.2013.054703.
[4] Singh A, Agrawal M. Acid rain and its ecological consequences[J]. J Environ Biol, 2008, 29(1):15-24.
[5] 宋国君,钱文涛,马本,等.中国酸雨控制政策初步评估研究[J].中国人口·资源与环境,2013,23(1):6-12. Doi:10.3969/j.issn.1002-2104.2013.01.001. Song G J,Qian W T,Ma B,et al.Preliminary evaluation on the policies of acid rain control in China[J].China Population,Resources and Environment, 2013,23(1):6-12.
[6] Tao F, Feng Z. Terrestrial ecosystem sensitivity to acid deposition in South China[J]. Water Air & Soil Pollution, 2000, 118(118):231-244.
[7] 缪国华,施丹平.2007—2008年江苏南部酸雨分析[C]//中国气象学会.中国气象学会2008年年会大气环境监测、预报与污染物控制分会场论文集.北京: 中国气象学会,2008:313-317.
[8] 张春霞,王福升,黄月英.菲白竹组培繁殖技术研究[J].林业科技开发,2006, 20(5):31-33. Doi:10.3969/j.issn.1000-8101.2006.05.009. Zhang C X,Wang F S,Huang Y Y. Techniques for tissue culture and micropropagation of Sasa fortunei[J]. Forestry Science and Technology, 2006,20(5):31-33.
[9] Zhao H, Lou Y, Sun H, et al. Transcriptome and comparative gene expression analysis of Phyllostachys edulis in response to high light[J]. BMC Plant Biol, 2016, 16:34. Doi:10.1186/s12870-016-0720-9.
[10] Liu L, Zhao H, He C F, et al. Isolation and characterisation of a gene for a DREB transcription factor from Phyllostachys edulis induced by drought[J]. The Journal of Horticultural Science and Biotechnology, 2011, 86(2):166-174. Doi:10.1080/14620316.2011.11512743.
[11] 林树燕, 丁雨龙. 三种观赏竹抗旱生理指标的研究及其综合评价[J]. 竹子研究汇刊, 2006, 25(2):7-9. Doi:10.3969/j.issn.1000-6567.2006.02.003. Lin S Y, Ding Y L. Researches on indexes of drought resistance of three ornamental bamboo species and corresponding comprehensive evaluation[J]. Journal of Bamboo Research, 2006, 25(2):7-9.
[12] 汤颖,李君敏,沈钰程,等.热处理工艺对竹材性能的影响[J].浙江农林大学学报,2014,31(2):167-171. Tang Y, Junbiao L I, Shen Y, et al. Phyllostachys edulis with high temperature heat treatments[J]. Journal of Zhejiang A & F University, 2014,31(2):167-171.
[13] Wu H L, Li L, Cheng Z C, et al. Cloning and stress response analysis of the PeDREB2A and PeDREB1A genes in moso bamboo(Phyllostachys edulis)[J]. Genetics and Molecular Research, 2015, 14(3):10206-10223. Doi:10.4238/2015.august.28.4.
[14] 谢寅峰,杨万红,杨阳,等.外源一氧化氮对模拟酸雨胁迫下箬竹(Indocalamus barbatus)光合特性的影响[J].生态学报,2007,27(12):5193-5201. Doi:10.3321/j.issn:1000-0933.2007.12.029. Xie Y F,Yang W H,Yang Y,et al.Effects of exogenous nitric oxide on photosynthetic characteristic of Indocalamus barbatus under a simulated acid rain stress condition[J].Acta Ecologica Sinica. 2007,27(12):5193-5201.
[15] Hu H, Wang L, Zhou Q, et al. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice[J]. Environ Sci Pollut Res Int, 2016, 23(9):8902-8916. Doi:10.1007/s11356-015-5962-9.
[16] 汪赛,伊力塔,余树全,等.模拟酸雨对青冈光合及叶绿素荧光参数的影响[J].应用生态学报,2014,25(8): 2183-2192. Wang S,Yi L T,Yu S Q,et al.Effects of simulating acid rain on photosynthesis and chlorophyll fluorescence parameters of Quercus glauca[J].Chinese Journal of Applied Ecology,2014,25(8): 2183-2192.
[17] Tripathi A, Tripathi D K, Chauhan D K, et al. Chromium(VI)-induced phytotoxicity in river catchment agriculture: evidence from physiological, biochemical and anatomical alterations in Cucumis sativus(L.)used as model species[J]. Chemistry and Ecology, 2016, 32(1):12-33. Doi:10.1080/02757540.2015.1115841.
[18] 耿东梅,单立山,李毅,等.土壤水分胁迫对红砂幼苗叶绿素荧光和抗氧化酶活性的影响[J].植物学报,2014, 49(3):282-291. Doi:10.3724/SP.J.1259.2014.00282. Geng D M,Shan L S,Li Y,et al. Effect of soil water stress on chlorophyll fluorescence and antioxidant enzyme activity in Reaumuria soongorica Seedlings[J].Chinese Bulletin of Botany, 2014, 49(3):282-291.
[19] 师生波,张怀刚,师瑞,等. 青藏高原春小麦叶片光合作用的光抑制及PSⅡ反应中心光化学效率的恢复分析[J].植物生态学报,2014,38(4):375-386. Doi:10.3724/SP.J.1258.2014.00034. Shi S B,Zhang H G,Shi R.et al. Assessment of photosynthetic photo-inhibition and recovery of PSⅡ photochemical efficiency in leaves of wheat varieties in Qinghai-Xizang Plateau[J].Chinese Journal of Plant Ecology, 2014,38(4):375-386.
[20] 郑波,高志民.毛竹苗期NPQ和ETR特征初步研究[J].世界竹藤通讯, 2011, 9(1):12-14. Doi:10.3969/j.issn.1672-0431.2011.01.003. Zheng B,Gao Z M. Preliminary study of NPQ and ETR characteristics of moso bamboo(Phyllostachys edulis)during Seedling Stage[J].World Bamboo and Rattan, 2011,9(1):12-14.
[21] 齐泽民,王玄德,宋光煜.酸雨对植物影响的研究进展[J].世界科技研究与发展,2004,26(2):36-41. Doi:10.3969/j.issn.1006-6055.2004.02.007. Qi Z M, Wang X D, Song G Y. The research progress of the effect of acid rain on plant[J]. World Sci-tech Research and Development, 2004,26(2): 36- 41.
[22] Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1): 317-345.
[23] 谢寅峰,杨万红,陆美蓉,等.模拟酸雨胁迫下硅对髯毛箬竹光合特性的影响[J].应用生态学报,2008,19(6): 1179-1184. Xie Y F,Yang W H,Lu M R,et al.Effects of silicon on photosynthetic characteristics of Indocalamus barbatus under simulated acid rain stress[J].Chinese Journal of Applied Ecology, 2008,19(6): 1179-1184.
[24] 胡月,张倩,孙东彬,等.模拟酸雨对桑树叶片光合日变化的影响[J].草业科学,2015, 32(11):1862-1870. Doi:10.11829\j.issn.1001-0629.2015-0160. Hu Y,Zhang Q,Zhang D B, et al.Effects of simulated acid rain on diurnal changes of mulberry(Morus alba)photosynthesis[J].Partacultural Science, 2015, 32(11):1862-1870.
[25] Baker N R. Chlorophyll fluorescence: a probe of photosynthesis in vivo[J]. Annu Rev Plant Biol, 2008, 59:89-113. Doi:10.1146/annurev.arplant.59.032607.092759.
[26] Farias M E, Martinazzo E G, Bacarin M A. Chlorophyll fluorescence in the evaluation of photosynthetic electron transport chain inhibitors in the pea[J]. Revista Ciência Agronômica, 2016, 47(1):633-643. Doi:10.5935/1806-6690.20160021.

基金

收稿日期:2016-02-27 修回日期:2016-04-14
基金项目:“十二五”国家科技支撑计划(2015BAD04B02); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:何亚飞(1368267588@qq.com)。*通信作者:谢寅峰(xxyy@njfu.edu.cn),教授。
引文格式:何亚飞,张珊珊,孙鑫,等. 高频度模拟酸雨胁迫条件下菲白竹光合响应规律[J]. 南京林业大学学报(自然科学版),2016,40(4):49-55.

PDF(1857420 KB)

Accesses

Citation

Detail

段落导航
相关文章

/