南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (04): 89-94.doi: 10.3969/j.issn.1000-2006.2016.04.014
段瑞兵,孙慧珍*
出版日期:
2016-08-18
发布日期:
2016-08-18
基金资助:
DUAN Ruibing, SUN Huizhen*
Online:
2016-08-18
Published:
2016-08-18
摘要: 质壁分离渗透势(Ψtlp)与质壁分离相对含水量(CRW,tlp)作为重要的水分生理参数,被认为是衡量树木耐旱性强弱的重要指标。为了验证不同方法确定质壁分离点的差异,笔者对比了Ⅰ型与Ⅱ型标绘P-V曲线类型,采用Ⅱ型标绘方式,利用常见的数学法、图形法和程序法分析了东北东部山区主要树种的Ψtlp和CRW,tlp。结果表明:Ⅰ型8个树种Ψtlp和CRW,tlp平均值分别较Ⅱ型高出0.20 MPa和3.17%。其中两种标绘类型对针叶树兴安落叶松和红松参数求解影响大于阔叶树。不同标绘类型改变了树种间参数的对比关系。Ⅱ型中除了程序法求解春榆Ψtlp显著高于数学法外(P<0.05),其他树种3种方法求解Ψtlp及CRW,tlp均无显著性差异(P>0.05)。3种方法求解的同一参数间的线性方程决定系数在0.63~0.90之间(P<0.01)。其中,数学法与图形法线性关系最好,数学法与程序法、图形法与程序法线性关系次之。Ⅱ型标绘P-V曲线图形变化平缓,曲线部分与直线部分分界明显,可较好地估计水分参数。图形法在适用性上具有优势。
中图分类号:
段瑞兵,孙慧珍. 确定P-V曲线中质壁分离点的方法比较[J]. 南京林业大学学报(自然科学版), 2016, 40(04): 89-94.
DUAN Ruibing, SUN Huizhen. Comparison of different methods for determining the turgor loss point in pressure-volume curves[J].Journal of Nanjing Forestry University (Natural Science Edition), 2016, 40(04): 89-94.DOI: 10.3969/j.issn.1000-2006.2016.04.014.
[1] Allen C D, Macalady A K, Chenchouni H,et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660-684. Doi:10.1016/j.foreco.2009.09.001.
[2] Sheffield J, Wood E F. Global trends and variability in soil moisture and drought characteristics, 1950-2000, from observation-driven simulations of the terrestrial hydrologic cycle[J]. Journal of Climate, 2008, 21(3): 432-458. Doi:10.1175/2007jcli1822.1. [3] Wang W, Peng C, Kneeshaw D D, et al. Drought-induced tree mortality: ecological consequences, causes, and modeling[J].Environmental Reviews, 2012, 20(2): 109-121. Doi:10.1139/a2012-004. [4] Martínez-vilalta J, Lloret F, Breshears D. Drought-induced forest decline: causes, scope and implications[J]. Biology Letters, 2012, 8(5): 689-691. Doi:10.1098/rsbl.2011.1059. [5] Brodribb T J, Holbrook N M, Edwards E J,et al. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees[J]. Plant, Cell & Environment, 2003, 26(3): 443-450. Doi:10.1046/j.1365-3040.2003.00975.x. [6] Bartlett M K, Zhang Y, Kreidler N,et al. Global analysis of plasticity in turgor loss point, a key drought tolerance trait[J]. Ecology Letters, 2014, 17(12): 1580-1590. Doi:10.1111/ele.12374. [7] Bartlett M K, Scoffoni C, Sack L. The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis[J]. Ecology Letters, 2012, 15(5): 393-405. Doi:10.1111/j.1461-0248.2014.0175.x. [8] 李骁,王迎春,征荣.西鄂尔多斯地区强旱生小灌木水分参数的研究(Ⅰ)[J]. 中国沙漠, 2005, 25(4): 581-586. Doi:10.3321/j.issn:1000-694X.2005.04.022. Li X, Wang Y C, Zheng R. Water parameters of xeric shrubs in West Erdos Region[J]. Journal of Desert Research, 2005, 25(4): 581-586. [9] 杨敏生,裴保华,于冬梅.水分胁迫对毛白杨杂种无性系苗木维持膨压和渗透调节能力的影响[J]. 生态学报, 1997, 17(4): 364-370. Yang M S, Pei B H, Yu D M. Influence of water stress on the abilities to maintain turgor and adjust osmosis in seedlings of hybrid clones of Populus tomentosa[J]. Acta Ecologica Sinica, 1997, 17(4): 364-370. [10] Tyree M T, Hammel H T. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique[J]. Journal of Experimental Botany, 1972, 23(1): 267-282. Doi:10.1093/jxb/231.267. [11] 张建国,李吉跃,姜金璞.京西山区人工林水分参数的研究(Ⅲ)[J]. 北京林业大学学报, 1994, 16(4): 46-54. Zhang J G, Li J Y, Jiang J P. A study on water parameters of plantations in mountain areas of west Beijing[J]. Journal of Beijing Forestry University, 1994, 16(4): 46-54. [12] 李岩,李德全,潘海春,等. PV技术在研究细胞壁弹性调节上的应用[J]. 植物生理学通讯, 1996, 32(3): 201-203. Li Y, Li D Q, Pan H C, et al. Use of PV technique in studying cell wall elastic adjustment[J]. Plant Physiology Communications, 1996, 32(3): 201-203. [13] 冯玉龙,姜淑梅. 番茄对高根温引起的叶片水分胁迫的适应[J]. 生态学报, 2001, 21(5): 747-751. Doi:10.3321/j.issn:1000-0933.2001.05.009. Feng Y L, Jiang S M. The adaptation to leaf water stress caused by high root temperature in tomato[J]. Acta Ecologica Sinica, 2001, 21(5): 747-751. [14] 冯玉龙,巨关升,朱春全. 杨树无性系幼苗光合作用和PV水分参数对水分胁迫的响应[J]. 林业科学, 2003, 39(3): 30-36. Feng Y L, Ju G S, Zhu C Q. Responses of photosynthesis and PV-parameters to water stress in Poplar clone seedlings[J]. Scientia Silvae Sinicae, 2003, 39(3): 30-36. [15] 何兴东,丛培芳,高玉葆,等. 利用压力-容积曲线研究四种草本植物的抗旱性[J]. 南开大学学报(自然科学版), 2006, 39(3): 16-22. He X D, Cong P F, Gao Y B, et al. Study on drought resistance of four herbs using pressure-volume curve[J]. Acta Scientiarum Naturallum Universitatis Nankaiensis, 2006, 39(3): 16-22. [16] 苏印泉,李瀚,李际红.林木体内水分状况测定——P-V 曲线的制作及其应用[J]. 西北林学院学报, 1989, 4(2): 33-38. Su Y Q, Li H, Li J H. Determination of the moisture state in forest trees-a process of making the P-V curve and it's application[J]. Journal of Northwest Forestry University, 1989, 4(2): 33-38. [17] Zhu S, Song J, Li R, et al. Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests[J]. Plant, Cell & Environment, 2013, 36(4): 879-891. Doi:10.1111/pce.12024. [18] 刘建伟,刘雅荣,王世绩. PV技术的计算机处理及其在树木水分关系研究中的应用[J]. 生态学杂志, 1994, 13(1): 60-63. Liu J W, Liu Y R, Wang S J. Computer processing of PV curve analysis and its application in the research of woody plant-water relation[J]. Chinese Journal of Ecology, 1994, 13(1): 60-63. [19] 李俊辉,李秧秧,赵丽敏,等. 立地条件和树龄对刺槐和小叶杨叶水力性状及抗旱性的影响[J]. 应用生态学报, 2012, 23(9): 2397-2403. Li J H, Li Y Y, Zhao L M, et al. Effects of site conditions and tree age on Robinia pseudoacacia and Populus simonii leaf hydraulic traits and drought resistance[J]. Chinese Journal of Applied Ecology, 2012, 23(9): 2397-2403. [20] Meinzer F, Rundel P, Sharifi M, et al. Turgor and osmotic relations of the desert shrub Larrea tridentata[J]. Plant, Cell & Environment, 1986, 9(6): 467-475. Doi:10.1111/j.1365-3040.1986.tb01762.x. [21] Schulte P, Hinckley T. A comparison of pressure-volume curve data analysis techniques[J]. Journal of Experimental Botany, 1985, 36(10): 1590-1602. Doi:10.1093/jxb/36.10.1590. [22] Wang C, Han Y, Chen J,et al. Seasonality of soil CO2 efflux in a temperate forest: biophysical effects of snowpack and spring freeze-thaw cycles[J]. Agricultural and Forest Meteorology, 2013, 177: 83-92. [23] 王万里. 压力室(Pressure Chamber)在植物水分状况研究中的应用[J]. 植物生理学通讯, 1984, 20(3): 52-57. Wang W L. Using pressure chamber to study the water characteristics of plant[J]. Plant Physiology Communications, 1984, 20(3): 52-57. [24] Sinclair R, Venables W. An alternative method for analysing pressure-volume curves produced with the pressure chamber[J]. Plant, Cell & Environment, 1983, 6(3): 211-217. Doi:10.1111/1365-3040.ep11587627. [25] Pardossi A, Malorgio F, Oriolo D,et al. Water relations and osmotic adjustment in Apium graveolens during long-term NaCl stress and subsequent relief[J]. Physiologia Plantarum, 1998, 102(3): 369-376. [26] 郭连生,田有亮. 对几种针阔叶树种耐旱性生理指标的研究[J]. 林业科学, 1989, 25(5): 389-394. Guo L S, Tian Y L. Research on the physiological index of drought-endurance for several species of needle-leaves and broad-leaves trees[J]. Scientia Silvae Sinicae, 1989, 25(5): 389-394. [27] Richter H. A diagram for the description of water relations in plant cells and organs[J]. Journal of Experimental Botany, 1978, 29(5): 1197-1203. Doi:10.1093/jxb/29.5.1197. [28] Tyree M T, Richter H. Alternate methods of analysing water potential isotherms: some cautions and clarifications.II. curvilinearity in water potential isotherms[J]. Canadian Journal of Botany, 1982, 60(6): 911-916. [29] Tyree M T, Richter H. Alternative methods of analyzing water potential isotherms: some cautions and clarifications I. the impact of non-ideality and of some experimental errors[J]. Journal of Experimental Botany, 1981, 32(3): 643-653. [30] Tyree M, Macgregor M, Petrov A,et al. A comparison of systematic errors between the Richards and Hammel methods of measuring tissue-water relations parameters[J]. Canadian Journal of Botany, 1978, 56(17): 2153-2161. [31] Tanentzap F M, Stempel A, Ryser P. Reliability of leaf relative water content(RWC)measurements after storage: consequences for in situ measurements[J]. Botany, 2015, 93(9): 535-541. Doi:10.1139/cjb-2015-0065. [32] Kubiske M E, Abrams M D. Rehydration effects on pressure-volume relationships in four temperate woody species: variability with site, time of season and drought conditions[J]. Oecologia, 1991, 85(4): 537-542. [33] Arndt S K, Irawan A, Sanders G J. Apoplastic water fraction and rehydration techniques introduce significant errors in measurements of relative water content and osmotic potential in plant leaves[J]. Physiologia Plantarum, 2015, 155(4): 355-368. [34] Abrams M D, Menges E S. Leaf ageing and plateau effects on seasonal pressure-volume relationships in three sclerophyllous Quercus species in south-eastern USA[J]. Functional Ecology, 1992, 6(3): 353-360. Doi:10.2307/2389527. [35] Kubiske M E, Abrams M D. Seasonal, diurnal and rehydration-induced variation of pressure-volume relationships in Pseudotsuga menziesii[J]. Physiologia Plantarum, 1991, 83(1): 107-116. [36] Ritchie G A, Shula R G. Seasonal changes of tissue-water relations in shoots and root systems of Douglas-fir seedlings[J]. Forest Science, 1984, 30(2): 538-548. [37] Yan M, Yamamoto M, Yamanaka N,et al. A comparison of pressure-volume curves with and without rehydration pretreatment in eight woody species of the semiarid loess plateau[J]. Acta Phy-siologiae Plantarum, 2013, 35(4): 1051-1060. |
[1] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[2] | 鲁旭东, 董禹然, 李垚, 毛岭峰. 中国亚热带杉木人工林不同林分发育阶段的群落构建机制[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 67-73. |
[3] | 邢冰冰, 李垚, 毛岭峰. 植物功能性状系统发育保守性的类群和地理分异研究——以中国被子植物最大株高为例[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 59-66. |
[4] | 萨如拉, 王子瑞, 滑永春, 呼日查, 刘磊, 高明龙, 于晓雨. 基于结构方程模型的大兴安岭北部天然林森林生态系统恢复能力评价研究[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 196-204. |
[5] | 路文燕, 董灵波, 田园, 汪莎杉, 曲宣怡, 魏巍, 刘兆刚. 基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 157-165. |
[6] | 宋歌, 韩芳, 许景伟, 杨志军, 穆豪祥, 王志勇, 王哲. 基于LandUSEM模型的山东沿海防护林树种分布适宜性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 42-50. |
[7] | 邹朋峻, 关庆伟, 袁在翔, 谷雨晴, 吴茜, 牛莹莹, 陈霞, 金雪梅. 紫金山南麓枫香种群结构与动态特征[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 157-163. |
[8] | 孙美佳, 周志勇, 王勇强, 沈颖, 夏威. 有机物添加对山西太岳山油松林土壤呼吸及碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 67-75. |
[9] | 姚楠, 刘广全, 姚顺波, 贾磊, 林颖, 邓元杰, 侯孟阳. 基于坡度视角的黄土高原退耕还林(草)工程碳汇效应分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 180-188. |
[10] | 王麒淞, 国庆喜. 吉林东部天然次生林下光强衰减的空间分布特征[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 101-108. |
[11] | 邹晓明, 王国兵, 葛之葳, 谢友超, 阮宏华, 吴小巧, 杨艳. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 167-176. |
[12] | 徐晨, 阮宏华, 吴小巧, 谢友超, 杨艳. 干旱影响森林土壤有机碳周转及积累的研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 195-206. |
[13] | 张瑞婷, 杨金艳, 阮宏华. 树干液流对环境变化响应研究的整合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 113-120. |
[14] | 李林珂, 王一诺, 薛潇, 张文, 吴焦焦, 高岚, 谭星, 荣星宇, 段儒蓉, 刘芸. 黄栌光合和呈色特性对重庆阴雨天气的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 95-103. |
[15] | 夏捷, 陈胜, 吴一凡, 张玮, 谢锦忠. 种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 127-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||