[1] Visscher P M, Brown M A, McCarthy M I, et al. Five years of GWAS discovery[J]. The American Journal of Human Genetics, 2012, 90(1): 7-24. Doi:10.1016/j.ajhg.2011.11.029.
[2] Cantor R M, Lange K, Sinsheimer J S. Prioritizing GWAS results: a review of statistical methods and recommendations for their application[J].The American Journal of Human Genetics, 2010, 86(1):6-22. Doi:10.1016/j.ajhg.2009.11.017.
[3] Stadler Z K, Vijai J, Thom P, et al. Genome-wide association studies of cancer predisposition[J]. Hematology Oncology Clinics of North America, 2010, 24(5): 973-996. Doi:10.1016/j.hoc.2010.06.009.
[4] Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease[J]. Nature Genetics, 2003, 33(3): 228-237. Doi:10.1038/ng1090.
[5] 姜海鸥,全庆丽,胡祥上,等. 全外显子组测序技术及其在遗传性耳聋研究中的应用[J]. 中华耳科学杂志, 2015, 13(1): 179-182.
Jiang H O, Quan Q L, Hu X S, et al. Whole exome sequencing and its application in genetic hearing loss research[J]. Chinese Journal of Otology, 2015, 13(1): 179-182.
[6] Zeitz C, Jacobson S G, Hamel C P, et al. Whole-Exome sequencing identifies LRIT3 mutations as a cause of autosomal-recessive complete congenital stationary night blindness[J]. The American Journal of Human Genetics, 2013, 92(1): 67-75. Doi:10.1016/j.ajhg.2012.10.023.
[7] Chen W J, Lin Y, Xiong Z Q, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia[J]. Nature Genetics, 2011, 43(12): 1252-1255. Doi: 10.1038/ng.1008.
[8] D'Ascenzo M, Meacham C, Kitzman J, et al.Mutation discovery in the mouse using genetically guided array capture and resequencing[J]. Mammalian Genome, 2009, 20(7): 424-436. Doi 10.1007/s00335-009-9200-y.
[9] Robert C, Fuentes-Utrilla P, Troup K, et al.Design and development of exome capture sequencing for the domestic pig(Sus scrofa)[J]. BMC Genomics, 2014,15:550. Doi: 10.1186/1471-2164-15-550.
[10] Saintenac C, Jiang D,Akhunov E D. Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome[J]. Genome Biology, 2011, 12(9): 88.
[11] Whitelaw C A, Barbazuk W B, Pertea G, et al.Enrichment of gene-coding sequences in Maize by genome filtration[J]. Science, 2003, 302: 2118-2120. Doi: 10.1126/science.1090047.
[12] Garber K. Fixing the front end[J]. Nature Biotechnology, 2008, 26(10): 1101-1104. Doi:10.1038/nbt1008-1101.
[13] Turner E H, Ng S B, Nickerson D A, et al. Methods for genomic partitioning[J]. Annual Review of Genomics and Human Genetics, 2009, 10: 263-284.Doi:10.1146/annurev-genom-082908-150112.
[14] Summerer D. Enabling technologies of genomie-scale sequence enrichment for targeted high-throughput sequencing[J]. Genomics, 2009, 94(6): 363-368. Doi: 10.1016/j.ygeno.2009.08.012.
[15] Mamanova L, Coffey A J, Scott C E, et al. Target-enrichment strategies for next-generation sequencing[J]. Nature Methods, 2010, 7: 111-118. Doi: 10.1038/nmeth.1419.
[16] Ku C S, Cooper D N, Polychronakos C, et al.Exome sequencing: dual role as a discovery and diagnostic tool[J]. Annals Neurology, 2012, 71(1): 5-14. Doi: 10.1002/ana.22647.
[17] Asan, Xu Y, Jiang H, et al. Comprehensive comparison of three commercial human whole-exome capture platforms[J]. Genome Biology, 2011, 12(9): R95. Doi: 10.1186/gb-2011-12-9-r95.
[18] Bodi K, Perera A G, Adams P S, et al. Comparison of commercially available target enrichment methods for next-generation sequencing[J]. Journal of Biomolecular Techniques, 2013, 24(2): 73-86. Doi: 10.7171/jbt.13-2402-002.
[19] Clark M J, Chen R, Lam H Y K, et al. Performance comparison of exome DNA sequencing technologies[J]. Nature Biotechnology, 2011, 29(10): 908-914. Doi:10.1038/nbt.1975.
[20] Chilamakuri C S R, Lorenz S, Madoui M A, et al. Performance comparison of four exome capture systems for deep sequencing[J]. BMC Genomics, 2014, 15(1):1-14. Doi: 10.1186/1471-2164-15-449.
[21] Sulonen A M, Ellonen P, Almusa H, et al. Comparison of solution-based exome capture methods for next generation sequencing[J]. Genome Biology, 2011,12(9): R94. Doi: 10.1186/gb-2011-12-9-r94.
[22] Droege M, Hill B. The Genome Sequencer FLXTM System-longer reads, more applications, straight forward bioinformatics and more complete data sets[J]. Journal Biotechnology, 2008, 136(1-2): 3-10.Doi:10.1016/j.jbiotec.2008.03.021.
[23] Hillier L W, Marth G T, Quinlan A R, et al. Whole-genome sequencing and variant discovery in C. elegans[J]. Nature Methods, 2008, 5(2): 183-188. Doi:10.1038/nmeth.1179.
[24] Hashimoto S, Qu W, Ahsan B, et al. High-resolution analysis of the 5'-end transcriptome using a next generation DNA sequencer[J]. PLoS One, 2009, 4(1): e4108. Doi: 10.1371/journal.pone.0004108.
[25] Rothberg J M, Leamon J H. The development and impact of 454 sequencing[J]. Nature Biotechnology, 2008, 26(10): 1117-1124. Doi: 10.1038/nbt1485.
[26] Bao R, Huang L, Andrade J, et al. Review of current methods, applications, and data management for the bioinformatics analysis of whole exome sequencing[J]. Cancer Informatics, 2014:13(s2)67-82. Doi: 10.4137/CIN.S13779.
[27] Wu T D, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads[J]. Bioinformatics, 2010, 26(7):873-881. Doi: 10.1093/bioinformatics/btq057.
[28] Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16): 2078-2079. Doi:10.1093/bioinformatics/btp352.
[29] Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing[J]. Quantitative Biology, 2012, 1207:3907.
[30] Challis D, Yu J, Evani U S, et al. An integrative variant analysis suite for whole exome next-generation sequencing data[J]. BMC Bioinformatics, 2012, 13(1):8. Doi: 10.1186/1471-2105-13-8.
[31] Cingolani P, Platts A, Wang L L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3[J]. Fly(Austin), 2012, 6(2): 80-92. Doi:10.4161/fly.19695.
[32] Nam J Y, Kim N K D, Kim S C, et al. Evaluation of somatic copy number estimation tools for whole-exome sequencing data[J]. Briefings in Bioinformatics, 2016,17(2):185-192. Doi: 10.1093/bib/bbv055.
[34] Ng S B, Buckingham K J, Lee C, et al. Exome sequencing identifies the cause of a mendelian disorder[J]. Nature Genetics, 2010, 42(1): 30-35. Doi:10.1038/ng.499.
[35] Zhang X J. Exome sequencing greatly expedites the progressive research of Mendelian diseases[J]. Frontiers Medicine, 2014, 8(1): 42-57. Doi: 10.1007/s11684-014-0303-9.
[36] Boycott K M, Vanstone M R, Bulman D E, et al. Rare-disease genetics in the era of next-generation sequencing: discovery to translation[J]. Nature Review Genetics, 2013, 14(10): 68l-691. Doi:10.1038/nrg3555.
[37] Clayton-Smith J, O'SulliVan J, Daly S, et al. Whole exome-Sequencing identifies mutations in histone acetyltransferase gene KAT6B in individuals with the say-barber-biesecker variant of ohdo syndrome[J]. The American Journal of Human Genetics, 2011, 89(5): 675-681. Doi:10.1016/j.ajhg.2011.10.008.
[38] Walsh T, Shahin H, Elkan-Miller T, et al. Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82[J]. The American Journal of Human Genetics, 2010, 87(1): 90-94. Doi:10.1016/j.ajhg.2010.05.010.
[39] Caliskan M, Chong J X, Uricchio L, et al. Exome sequencing reveals a novel mutation for autosomal recessive non-syndromic mental retardation in the TECR gene on chromosome 19p13[J]. Human Molecular Genetics, 2011, 20(7): 1285-1289. Doi:10.1093/hmg/ddq569.
[40] Johnson J O, Mandrioli J, Benatar M, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS[J]. Neuron, 2010, 68(5): 857-864. Doi:10.1016/j.neuron.2011.01.009.
[41] Bilgüvar K, Öztürk A K, Louvi A, et al. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations[J]. Nature, 2010, 467: 207-210. Doi:10.1038/nature09327.
[42] Musunuru K, Pirruccello J P, Do R, et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia[J]. The New England Journal of Medicine, 2010, 363(23): 2220-2227. Doi: 10.1056/NEJMoa1002926.
[43] Cosart T, Beja-Pereira A, Chen S Y, et al. Exome-wide DNA capture and next generation sequencing in domestic and wild species[J]. BMC Genomics, 2011, 12: 347. Doi: 10.1186/1471-2164-12-347.
[44] Bolon Y T, Haun W J, Xu W W, et al. Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean[J]. Plant Physiology, 2011, 156(1): 240-253. Doi: 10.1104/pp.110.170811.
[45] Salmon A, Udall J A, Jeddeloh J A, et al. Targeted capture of homoeologous coding and noncoding sequence in polyploid cotton[J]. Genes Genomes Genetics, 2012,2(8): 921-930. Doi: 10.1534/g3.112.003392.
[46] Mascher M T A, Richmond D J, Gerhardt A, et al. Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond[J]. Plant Journal, 2013, 76(3): 494-505. Doi: 10.1111/tpj.12294.
[47] Klein C J, Botuyan M V, Wu Y, et al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss[J]. Nature Genetics, 2011, 43(6): 595-600. Doi: 10.1038/ng.830.
[48] Biesecker L G. Exome sequencing makes medical genomics a reality[J]. Nature Genetics, 2010, 42(1): 13-14. Doi:10.1038/ng0110-13.
[49] Henry I M, Nagalakshmi M, Lieberman M C, et al. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing[J]. Plant Cell, 2014, 26(4): 1382-1397. Doi:10.1105/tpc.113.121590.
[50] Brenchley R, Spannagl M, Pfeifer M, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing[J]. Nature, 2012, 491: 705-710. Doi:10.1038/nature11650.
[51] Winfield M O, Wilkinson P A, Allen A M, et al. Targeted re-sequencing of the allohexaploid wheat exome[J]. Plant Biotechnology Journal, 2012, 10(6): 733-742. Doi: 10.1111/j.1467-7652.2012.00713.x. |