生物炭对杨树人工林土壤微生物量及碳源代谢多样性的影响

许文欢,邓芳芳,方水元,王国兵,阮宏华,曹国华

南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (05) : 14-20.

PDF(1679717 KB)
PDF(1679717 KB)
南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (05) : 14-20. DOI: 10.3969/j.issn.1000-2006.2016.05.003
专题报道

生物炭对杨树人工林土壤微生物量及碳源代谢多样性的影响

  • 许文欢1, 邓芳芳1,方水元1,王国兵1,阮宏华1*,曹国华2
作者信息 +

Effect of biochar on soil microbial biomass and the diversity of carbon source metabolism in poplar plantation

  • XU Wenhuan1, DENG Fangfang1, FANG Shuiyuan1, WANG Guobing1, RUAN Honghua1*, CAO Guohua2
Author information +
文章历史 +

摘要

生物炭不仅可以改良土壤理化性质,并且能够帮助土壤长期固碳从而减缓温室气体的排放。以江苏东台杨树人工林土壤为对象,设计4种生物炭添加量CK(0)、T1(40 t/hm2)、T2(80 t/hm2)、T3(120 t/hm2),探究生物炭及其季节动态变化对土壤理化性质、微生物量和碳源代谢的影响。结果表明:生物炭施入降低土壤含水率,却使得土壤pH升高; 生物炭导致土壤微生物量氮(SMBN)下降,并且SMBN具有明显季节动态变化,即冬春偏高、夏秋相对较低; 而生物炭没有明显改变土壤微生物量碳(SMBC),但SMBC季节动态变化明显。高浓度生物炭(T3)显著提高了微生物在Biolog平板上的AWCD(平均单孔颜色变化率),但对碳源代谢多样性影响不显著。主成分分析表明,相比不同的施炭处理,同一处理季节的差异更显著地影响了微生物碳源的代谢模式。

Abstract

Biochar is evaluated as a means to improve soil physicochemical properties and to mitigate climate change, which has received widespread attention. This study targeted on poplar plantation in Dongtai in Jiangsu Province and designed four different levels of biochar: CK(0), T1(40 t/hm2), T2(80 t/hm2)and T3(120 t/hm2)to investigate how biochar and seasonal changes affect soil physicochemical parameters, microbial biomass and metabolic activity of carbon sources. The result showed as follow: soil moisture content decreased after the addition of biochar, while soil pH significantly increased. Biochar caused the decrease of SMBN(soil microbial biomass nitrogen), and its values presented significant seasonal changes: the values in winter and spring were higher than that in summer and autumn; whereas biochar did not change the seasonal SMBC(soil microbial biomass carbon)in this study but it presented the significant seasonal changes. High level of biochar(T3)improved the AWCD(average well color change)value of microbes on Eco-plate, but exerted no effect on diversity of carbon source metabolism. However, compared with the effects of biochar, seasonal changes exerted more dramatic effect on microbial metabolic patterns.

引用本文

导出引用
许文欢,邓芳芳,方水元,王国兵,阮宏华,曹国华. 生物炭对杨树人工林土壤微生物量及碳源代谢多样性的影响[J]. 南京林业大学学报(自然科学版). 2016, 40(05): 14-20 https://doi.org/10.3969/j.issn.1000-2006.2016.05.003
XU Wenhuan, DENG Fangfang, FANG Shuiyuan, WANG Guobing, RUAN Honghua, CAO Guohua. Effect of biochar on soil microbial biomass and the diversity of carbon source metabolism in poplar plantation[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2016, 40(05): 14-20 https://doi.org/10.3969/j.issn.1000-2006.2016.05.003
中图分类号: S154   

参考文献

[1] Change IPOC. Climate change 2007: The physical science basis [J]. Agenda, 2007, 6(7): 333.
[2] Glaser B, Haumaier L, Guggenberger G, et al. The ‘Terra Preta' phenomenon: a model for sustainable agriculture in the humid tropics [J]. Naturwissenschaften, 2001, 88(1): 37-41.
[3] Marris E. Putting the carbon back:black is the new green[J]. Nature, 2006, 442(7103): 624-626. Doi:10.1038/442624a.
[4] Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems: a review[J]. Mitigation and Adaptation Strategies for Global Change, 2006, 11(2): 395-419.
[5] Ishii T, Kadoya K. Effects of charcoal as a soil conditioner on citrus growth and vesicular-arbuscular mycorrhizal development [J]. Engei Gakkai Zasshi, 1994, 63(3): 529-35.
[6] Ogawa M, Okimori Y, Krull E, et al. Pioneering works in biochar research, Japan [J]. Soil Research, 2010, 48(7): 489-500.
[7] Lehmann J, Rillig M C, Thies J, et al. Biochar effects on soil biota-a review [J]. Soil Biology and Biochemistry, 2011, 43(9): 1812-36.
[8] Lehmann J, Sohi S. Comment on “Fire-derived charcoal causes loss of forest humus”[J]. Science, 2008, 321(5894): 1295. Doi:10.1126/science.1160005.
[9] Warnock D D, Lehmann J, Kuyper T W, et al. Mycorrhizal responses to biochar in soil- concepts and mechanisms[J]. Plant Soil, 2007, 300(1): 9-20. Doi:10.1007/s11104-007-9391-5.
[10] Jenkinson D S, Andrew S P S, Lynch J M, et al. The turnover of organic carbon and nitrogen in soil[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 1990, 329(1255): 361-368. Doi:10.1098/rstb.1990.0177.
[11] Gross K, Cardinale B J, Fox J W, et al. Speciesrichness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments[J]. Am Nat, 2014, 183(1): 1-12. Doi:10.1086/673915.
[12] Liu B, Li Y, Zhang X, et al. Effects of chlortetracycline on soil microbial communities: comparisons of enzyme activities to the functional diversity via Biolog EcoPlatesTM[J]. European Journal of Soil Biology, 2015, 68: 69-76. Doi:10.1016/j.ejsobi.2015.01.002.
[13] HackettC A, Griffiths B S. Statistical analysis of the time-course of biolog substrate utilization[J]. Journal of Microbiological Methods, 1997, 30(1): 63-69. Doi:10.1016/s0167-7012(97)00045-6.
[14] Garau G, Castaldi P, Santona L, et al. Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil [J]. Geoderma, 2007, 142(1-2): 47-57.
[15] Garland J. Analysis and interpretation of community-level physiological profiles in microbial ecology[J]. FEMS Microbiology Ecology, 1997, 24(4): 289-300. Doi:10.1016/s0168-6496(97)00061-5.
[16] Liu F, Wu J, Ying G G, et al. Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline[J]. Appl Microbiol Biotechnol, 2012, 95(6): 1615-1623. Doi:10.1007/s00253-011-3831-0.
[17] 刘艳, 周国逸, 褚国伟, 等. 鼎湖山针阔叶混交林土壤酸度与土壤养分的季节动态[J]. 生态环境, 2005, 14(1): 81-85. Doi:10.3969/j.issn.1674-5906.2005.01.017. Liu Y, Zhou G Y, Chu G W, et al. Seasonal dynamics of soil acidity and nutrient contents under coniferous and broad-leaved mixed forest at dinghushan[J]. Ecology and Environment, 2005, 14(1): 81-85. Doi:10.3969/j.issn.1674-5906.2005.01.017.
[18] 曾爱, 廖允成, 张俊丽, 等. 生物炭对塿土土壤含水量、有机碳及速效养分含量的影响[J]. 农业环境科学学报, 2013, 32(5): 1009-1015.
[19] Jones D L, Rousk J, Edwards-Jones G, et al. Biochar-mediated changes in soil quality and plant growth in a three year field trial[J]. Soil Biology and Biochemistry, 2012, 45: 113-124. Doi:10.1016/j.soilbio.2011.10.012.
[20] Van Zwieten L, Kimber S, Morris S, et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J].Plant Soil, 2009, 327(1): 235-246. Doi:10.1007/s11104-009-0050-x.
[21] Rogers B F, Tate R L. Temporal analysis of the soil microbial community along a toposequence in pineland soils[J]. Soil Biology and Biochemistry, 2001, 33(10): 1389-1401. Doi:10.1016/s0038-0717(01)00044-x.
[22] 仇少君, 彭佩钦, 刘强, 等. 土壤微生物生物量氮及其在氮素循环中作用[J]. 生态学杂志, 2006, 25(4): 443-448. Qiu S J, Peng P Q, Liu Q, et al. Soil microbial biomass nitrogen and its role in nitrogen cycling[J]. Chinese Journal of Ecology, 2006, 25(4): 443-448.
[23] 李世清, 任书杰, 李生秀. 土壤微生物体氮的季节性变化及其与土壤水分和温度的关系[J]. 植物营养与肥料学报, 2004, 10(1): 18-23. Doi:10.3321/j.issn:1008-505X.2004.01.004. Li S Q, Ren S J, Li S X. Seasonal change of soil microbial biomass and the relationship between soil microbial biomass and soil moisture and temperature[J]. Plant Nutrition and Fertilizer Science, 2004, 10(1): 18-23. Doi:10.3321/j.issn:1008-505X.2004.01.004.
[24] 何振立. 土壤微生物量及其在养分循环和环境质量评价中的意义[J]. 土壤, 1997, 29(2): 61-69.
[25] Hamel C, Hanson K, Selles F, et al. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie[J]. Soil Biology and Biochemistry, 2006, 38(8): 2104-2116. Doi:10.1016/j.soilbio.2006.01.011.
[26] 张德明, 陈章和. 白云山土壤微生物的季节变化及其对环境污染的反应[J]. 生态科学, 1998, 17(1): 40-45.
[27] Bruun E. Application of fast pyrolysis biochar to a loamy soil [D]. Lyngby: Technical University of Denmark, 2011.
[28] Zavalloni C, Alberti G, Biasiol S, et al. Microbial mineralization of biochar and wheat straw mixture in soil: a short-term study [J]. Applied Soil Ecology, 2011, 50:45-51.
[29] Lauber C L, Hamady M, Knight R, et al.Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Appl Environ Microbiol, 2009, 75(15): 5111-5120. Doi:10.1128/AEM.00335-09.
[30] Hammer E C, Balogh-Brunstad Z, Jakobsen I, et al. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces[J]. Soil Biology and Biochemistry, 2014, 77: 252-260. Doi:10.1016/j.soilbio.2014.06.012.
[31] Khodadad C L M, Zimmerman A R, Green S J, et al. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments[J]. Soil Biology and Biochemistry, 2011, 43(2): 385-392. Doi:10.1016/j.soilbio.2010.11.005.
[32] Calbrix R, Barray S, Chabrerie O, et al. Impact of organic amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated land[J]. Applied Soil Ecology, 2007, 35(3): 511-522. Doi:10.1016/j.apsoil.2006.10.007.
[33] 张德强, 叶万辉, 余清发, 等. 鼎湖山演替系列中代表性森林凋落物研究[J]. 生态学报, 2000, 20(6): 938-944.
[34] O'Neill B, Grossman J, Tsai M T, et al. Bacterial community composition in Brazilian anthrosols and adjacent soils characterized using culturing and molecular identification [J]. Microb Ecol, 2009, 58(1): 23-35.
[35] BruunE W, Müller-Stöver D, Ambus P, et al. Application of biochar to soil and N2O emissions: potential effects of blending fast-pyrolysis biochar with anaerobically digested slurry[J]. European Journal of Soil Science, 2011, 62(4): 581-589. Doi:10.1111/j.1365-2389.2011.01377.x.
[36] KolbS E, Fermanich K J, Dornbush M E. Effect of charcoal quantity on microbial biomass and activity in temperate soils[J]. Soil Science Society of America Journal, 2009, 73(4): 1173. Doi:10.2136/sssaj2008.0232.

基金

收稿日期:2016-01-18 修回日期:2016-05-27
基金项目:国家重点基础研究发展计划(2012CB416904); 江苏高校优势学科建设工程资助项目(PAPD); 江苏省自然科学基金青年专项项目(BK20130974)
第一作者:许文欢(543964578@qq.com)。*通信作者:阮宏华(hhruan@njfu.edu.cn),教授。
引文格式:许文欢,邓芳芳,方水元,等. 生物炭对杨树人工林土壤微生物量及碳源代谢多样性的影响[J]. 南京林业大学学报(自然科学版),2016,40(5):14-20.

PDF(1679717 KB)

Accesses

Citation

Detail

段落导航
相关文章

/