南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (05): 99-106.doi: 10.3969/j.issn.1000-2006.2016.05.016

• 研究论文 • 上一篇    下一篇

基于ICESat-GLAS波形数据估测森林郁闭度

邱 赛,邢艳秋*,田 静,丁建华   

  1. 东北林业大学工程技术学院,黑龙江 哈尔滨 150040
  • 出版日期:2016-10-18 发布日期:2016-10-18
  • 基金资助:
    收稿日期:2016-01-22 修回日期:2016-04-13
    基金项目:国家林业公益性行业科研专项项目(201504319); 中央高校基本科研业务费专项资金项目(2572014AB08); 国家自然科学基金面上项目(41171274)
    第一作者:邱赛(qiusai1128@163.com)。*通信作者:邢艳秋(yanqiuxing@nefu.edu.cn),教授。
    引文格式:邱赛,邢艳秋,田静,等. 基于ICESat-GLAS波形数据估测森林郁闭度[J]. 南京林业大学学报(自然科学版),2016,40(5):99-106.

Estimation of forest canopy density based on ICESat-GLAS waveform data

QIU Sai, XING Yanqiu*, TIAN Jing, DING Jianhua   

  1. College of Technology and Engineering, Northeast Forestry University, Harbin 150040, China
  • Online:2016-10-18 Published:2016-10-18

摘要: 为探究GLAS波形数据在估测森林郁闭度方面的潜力,以吉林省汪清林业局经营区为研究区,利用高斯低通滤波器对GLAS波形数据进行平滑滤波,从平滑后的GLAS波形数据中提取比值能量参数(I)和差值能量参数(ec),针对不同森林类型分别建立森林郁闭度单变量模型和多变量模型。研究结果表明:利用参数I建立的单变量模型优于利用参数ec建立的单变量模型; 而利用参数Iec建立的多变量模型明显优于单变量模型。对阔叶林来说,森林郁闭度模型的决定系数(R2adj)和均方根误差(RMSE)分别为0.72和0.07,模型验证的R2adj为0.74,RMSE为0.06; 而对于针叶林,模型的R2adj为0.80,RMSE为0.10,模型验证的R2adj为0.76,RMSE为0.11; 混交林模型的精度在阔叶林和针叶林之间,模型的R2adj为0.75,RMSE为0.09,模型验证的R2adj和RMSE分别为0.71和0.07。因此,GLAS波形数据在估测森林郁闭度方面具有一定的潜力,将参数Iec联合能够提高GLAS波形数据估测森林郁闭度的精度。

Abstract: Using the Wangqing forestry area in Jilin Province as a study area, the potential ability of GLAS waveform for estimating forest canopy density was explored in this study. The GLAS waveform was smoothed and fitted by Gaussian low pass filters, and then waveform parameters(i.e. I and ec)were extracted from the smoothed GLAS waveform. The single-variable model and multi-variable model were developed with the two waveform parameters, respectively. The results showed that the single-variable model built with I were superior to that developed with ec. The accuracy of multi-variable models was better than that of the single-variable models. For broad-leaf forest, the R2adj and RMSE(σRMSE)were 0.72 and 0.07, respectively, and the validation results were R2adj=0.74 and σRMSE=0.06. The model accuracy of coniferous forest was the highest(R2adj=0.80, σRMSE=0.10)with validation results of R2adj=0.76 and σRMSE=0.11. The model accuracy of the mixed forest was higher than the broad-leaf forest, but lower than the coniferous forest. The values of R2adj and RMSE were 0.75 and 0.09, respectively, with the validation results of R2adj=0.71 and σRMSE=0.07. The results demonstrate that GLAS waveforms have the capability to estimate the forest canopy density, and the estimation accuracy can be improved by combining I and ec.

中图分类号: