[1] 杜晓明,蔡体久,琚存勇.采用偏最小二乘回归方法估测森林郁闭度[J].应用生态学报,2008,19(2):273-277.
Du X M, Cai T J, Ju C Y. Estimation of forest canopy closure by using partial least square regression[J].Chinese Journal of Applied Ecology, 2008, 19(2): 273-277.
[2] 朱教君,康宏樟,胡理乐.应用全天空照片估计林分透光孔隙度(郁闭度)[J].生态学杂志,2005,24(10):1234-1240.
Zhu J J, Kang H Z, Hu L L. Estimation on optical porosity or canopy closure for a forest stand with hemispherical images[J].Chinese Journal of Ecology, 2005, 24(10): 1234-1240.
[3] 李崇贵,蔡体久.森林郁闭度对蓄积量估测的影响规律[J].东北林业大学学报,2006,34(1):15-17.Doi:10.3969/j.issn.1000-5382.2006.01.006.
Li C G, Cai T J. Effect of forest canopy density on stock volume estimation[J]. Journal of Northeast Forestry University, 2006, 34(1): 15-17.
[4] Pu R, Gong P. Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping[J]. Remote Sensing of Environment, 2004, 91(2): 212-224.Doi:10.1016/j.rse.2004.03.006.
[5] 杨存建,倪静,周其林,等.不同林分郁闭度与遥感数据的相关性[J].生态学报,2015,35(7):2119-2125.Doi:10.5846/stxb201306101626.
Yang C J, Ni J, Zhou Q L, et al. Correlation analysis of canopy density with remote sensing data for different forest stand[J]. Acta Ecologica Sinica, 2015, 35(7): 2119-2125.
[6] 谭炳香.高光谱遥感森林类型识别及其郁闭度定量估测研究[D].北京:中国林业科学研究院,2006.
Tan B X. extraction of forest types and estimation of forest canopy closure from hyperspectral remote sensing[D]. Beijing: Chinese Academy of Forestry, 2006.
[7] Lefsky M A, Hudak A T, Cohen W B, et al. Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest[J]. Remote Sensing of Environment, 2005, 95(4): 532-548.Doi:10.1016/j.rse.2005.01.010.
[8] Koch B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(6): 581-590.Doi:10.1016/j.isprsjprs.2010.09.001.
[9] 穆喜云,张秋良,刘清旺,等.基于机载 LiDAR 数据的林分平均高及郁闭度反演[J].东北林业大学学报,2015,43(9):84-89.Doi:10.3969/j.issn.1000-5382.2015.09.017.
Mu X Y, Zhang Q L, Liu Q W, et al. Inversion of forest height and canopy closure using airborne LiDAR data[J]. Journal of Northeast Forestry University, 2015, 43(9):84-89.
[10] Morsdorf F, Kötz B, Meier E, et al. Estimation of LAI and fractional cover from small footprint airborne laser scanning data based on gap fraction[J]. Remote Sensing of Environment, 2006, 104(1): 50-61.
[11] Schutz B E, Zwally H J, Shuman C A, et al. Overview of the ICESat Mission[J]. Geophysical Research Letters, 2005, 32(21): 97-116.Doi:10.1029/2005g1024009.
[12] García M, Popescu S, Riaño D, et al. Characterization of canopy fuels using ICESat/GLAS data[J]. Remote sensing of Environment, 2012, 123: 81-89.
[13] Xing Y, Gier A D, Zhang J, et al. An improved method for estimating forest canopy height using ICESat-GLAS full waveform data over sloping terrain: a case study in Changbai mountains, China[J]. International Journal of Applied Earth Observation, 2010, 12(5): 385-392.Doi:10.1016/j.jag.2010.04.010.
[14] 邢艳秋,王立海.基于ICESat—GLAS完整波形的坡地森林冠层高度反演研究——以吉林长白山林区为例[J].武汉大学学报(信息科学版),2009,34(6):696-700.
Xing Y Q, Wang L H.ICESat-GLAS full waveform based study on forest canopy height retrieval in slope area-a case study of forests in Changbai Mountains, Jilin[J].Journal of Wuhan University(Information Science Edition),2009, 34(6): 696-700.
[15] Lefsky M A, Harding D J, Michael K, et al. Estimates of forest canopy height and aboveground biomass using ICESat[J]. Geophysical Research Letters, 2005, 32(22), Doi:10.1029/2005GL025518.
[16] Sun G, Ranson K J, Kimes D S, et al. Forest vertical structure from GLAS: an evaluation using LVIS and SRTM data[J]. Remote Sensing of Environment, 2008, 112(1): 107-117.Doi:10.1016/j.rse.2006.09.036.
[17] Harding D J, Carabajal C C. ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure[J]. Geophysical Research Letters, 2005, 32(21), Doi: 10.1029/2005GL023471. |