南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (05): 155-162.doi: 10.3969/j.issn.1000-2006.2016.05.025
樊 奔, 陈 晟, 李昱龙
出版日期:
2016-10-18
发布日期:
2016-10-18
基金资助:
FAN Ben, CHEN Sheng, LI Yulong
Online:
2016-10-18
Published:
2016-10-18
摘要: 非编码小RNA(small RNA, sRNA)是细菌基因转录后调控的一个重要层次,也是近十年来原核生物研究领域的焦点之一。大多数sRNA的作用与Hfq蛋白密切相关,即Hfq可以促进sRNA与其靶标mRNA的互补配对,进而影响翻译的进行或者mRNA的稳定性。笔者对Hfq的结构、Hfq参与sRNA调节作用的机制、Hfq在多种细菌中的功能表型进行了综述。Hfq是一个保守的蛋白质,在很多细菌中广泛存在,并与真核生物中参与mRNA剪切与降解活动的Sm蛋白同源。在结构上,Hfq具有两个非等同的RNA结合面,可以结合并介导多个RNA分子的相互作用,其结构体现了和功能的高度统一性。目前,对Hfq的研究主要集中于革兰氏阴性细菌中,在革兰氏阳性细菌中,Hfq的功能尚不明晰; 此外,在许多重要的细菌中,Hfq影响功能表型的具体机制也不清楚。因此,今后有必要进一步精细研究Hfq的分子结构特征和功能特点,深入分析Hfq对细菌表型多样化的影响机制,探究Hfq影响靶标分子和功能表型的详尽机制。
中图分类号:
樊奔,陈晟,李昱龙. 细菌Hfq蛋白的结构、功能及作用机制[J]. 南京林业大学学报(自然科学版), 2016, 40(05): 155-162.
FAN Ben, CHEN Sheng, LI Yulong. Structure, function and mechanisms of bacterial protein Hfq[J].Journal of Nanjing Forestry University (Natural Science Edition), 2016, 40(05): 155-162.DOI: 10.3969/j.issn.1000-2006.2016.05.025.
[1] Franze de Fernandez M T, Eoyang L, August J T. Factor fraction required for the synthesis of bacteriophage Qbeta-RNA[J]. Nature, 1968, 219(5154):588-590.
[2] Carmichael G G, Weber K, Niveleau A, et al. The host factor required for RNA phage Qp RNA replication in vitro[J]. J Biol Chem, 1975, 250:3607-3612. [3] Vogel J, Luisi B F. Hfq and its constellation of RNA[J]. Nat Rev Microbiol, 2011, 9(8):578-589. Doi:10.1038/nrmicro2615. [4] Waters L S, Storz G. Regulatory RNAs in bacteria[J]. Cell, 2009, 136(4):615-628. Doi:10.1016/j.cell.2009.01.043. [5] Gottesman S. Micros for microbes: non-coding regulatory RNAs in bacteria[J]. Trends Genet, 2005, 21(7):399-404. Doi:10.1016/j.tig.2005.05.008. [6] Sobrero P, Valverde C. The bacterial protein Hfq: much more than a mere RNA-binding factor[J]. Critical Reviews in Microbiology, 2012, 38:276-299. Doi:10.3109/1040841x.2012.664540. [7] Schumacher M A, Pearson R F, Mueller T, et al. Structure of the pleiotropic translational regulator Hfq and an Hfq-RNA complex:a bacterial Sm-like protein[J]. EMBO J, 2002, 21:3546-3556. Doi:10.1093/emboj/cdf322. [8] Dondrup M, Albaum S P, Griebel T, et al. EMMA 2--a MAGE-compliant system for the collaborative analysis and integration of microarray data[J]. BMC Bioinformatics, 2009, 10:50. Doi:10.1186/1471-2105-10-50. [9] Beich-Frandsen M, Vecˇerek B, Konarev P V, et al. Structural insights into the dynamics and function of the C-terminus of the E. coli RNA chaperone Hfq[J]. Nucleic Acids Research, 2011, 39(11):4900-4915. Doi:10.1093/nar/gkq1346. [10] Beich-Frandsen M, Vecˇerek B, Sjöblom B, et al. Structural analysis of full-length Hfq from Escherichia coli[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2011, 67(Pt 5):536-540. Doi:10.1107/S174430911100786X. [11] Ishikawa H, Otaka H, Maki K, et al. double or single hairpin preceded by a U-rich sequence and followed the functional Hfq-binding module of bacterial sRNAs consists of a by a 3' poly(U)tail[J]. RNA, 2012, 18(5):1062-1074. Doi:10.1261/rna.031575.111. [12] Otaka H, Ishikawaa H, Moritab T, et al. PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action[J]. Proc Natl Acad Sci USA, 2011, 108:13059-13064. Doi:10.1073/pnas.1107050108. [13] Sauer E, Schmidt S, Weichenrieder O. Small RNA binding to the lateral surface of Hfq hexamers and structural rearrangements upon mRNA target recognition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24):9396-9401. Doi:10.1073/pnas.1202521109. [14] Mikulecky P J, Kaw M K, Brescia C C, et al. Escherichia coli Hfq has distinct interaction surfaces for DsrA,rpoS and poly(A)RNAs[J]. Nat Struct Mol Biol, 2004, 11:1206-1214. Doi:10.1038/nsmb858. [15] Zhang A, Schu D J, Tjaden B C, et al. Mutations in interaction surfaces differentially impact E. coli Hfq association with small RNAs and their mRNA targets[J]. J Mol Biol, 2013, 425:3678-3697. Doi:10.1016/j.jmb.2013.01.006. [16] Soper T J, Woodson S A. The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA[J]. RNA, 2008, 14(9):1907-1917. Doi:10.1261/rna.1110608. [17] Salim N N, Feig A L. An upstream Hfq binding site in the fhlA mRNA leader region facilitates the OxyS-fhlA interaction[J]. PLoS ONE, 2010, 5(9):e13028. Doi:10.1371/journal.pone.0013028. [18] Salim N N, Faner M A, Philip J A, et al. Requirement of upstream Hfq-binding(ARN)x elements in glmS and the Hfq C-terminal region for GlmS upregulation by sRNAs GlmZ and GlmY[J]. Nucleic Acids Res, 2012, 40(16):8021-8032. Doi:10.1093/nar/gks392. [19] Liang H, Zhao Y T, Zhang J Q, et al. Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae[J]. BMC Genomics, 2011, 12:87. Doi:10.1186/1471-2164-12-87. [20] Fender A, Elf J, Hampel K, et al. RNAs actively cycle on the Sm-like protein Hfq[J]. Genes Dev, 2010, 24(23):2621-2626. Doi:10.1101/gad.591310. [21] Moon K, Gottesman S. Competition among Hfq-binding small RNAs in Escherichia coli[J]. Molecular Microbiology, 2011, 82:1545-1562. Doi:10.1111/j.1365-2958.2011.07907.x. [22] Olejniczak M. Despite similar binding to the Hfq protein regulatory RNAs widely differ in their competition performance[J]. Biochemistry, 2011, 50:4427-4440. Doi:10.1021/bi102043f. [23] Hussein R, Lim H N. Disruption of small RNA signaling caused by competition for Hfq[J]. Proc Natl Acad Sci USA, 2010, 108(3):1110-1115. Doi:10.1073/pnas.1010082108. [24] Sonnleitner E, Hagens S, Rosenau F, et al. Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1[J]. Microbial Pathogenesis, 2003, 35(5):217-228. Doi:10.1016/S0882-4010(03)00149-9. [25] Ding Y, Davis B M, Waldor M K. Hfq is essential for Vibrio cholerae virulence and downregulates sigma expression[J]. Molecular Microbiology, 2004, 53(1):345-54. Doi:10.1111/j.1365-2958.2004.04142.x. [26] Kulesus R R, Diaz-Perez K, Slechta E S, et al. Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli[J]. Infect Immun, 2008, 76(7):3019-3026. Doi:10.1128/IAI.00022-08. [27] Kakoschke T, Kakoschke S, Magistro G, et al. The RNA chaperone Hfq impacts growth, metabolism and production of virulence factors in Yersinia enterocolitica[J]. PLoS One, 2014, 9(1):e86113. Doi:10.1371/journal.pone.0086113. [28] Sittka A, Pfeiffer V, Tedin K, et al. The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium[J]. Mol Microbiol, 2007, 63(1):193-217. Doi:10.1111/j.1365-2958.2006.05489.x. [29] Geng J, Song Y, Yang L, et al. Involvement of the post-transcriptional regulator Hfq in Yersinia pestis virulence[J]. PLoS ONE, 2009, 4(7):e6213. Doi:10.1371/journal.pone.0006213. [30] Liu Y, Wu N, Dong J, et al. Hfq is a global regulator that controls the pathogenicity of Staphylococcus aureus[J]. PLoS ONE, 2010, 5(9):e013069. Doi:10.1371/journal.pone.0013069. [31] Cui M, Wang T, Xu J, et al. Impact of Hfq on global gene expression and intracellular survival in Brucella melitensis[J]. PLoS One, 2013, 8(8):e71933. Doi:10.1371/journal.pone.0071933. [32] Sittka A, Pfeiffer V, Tedin K, et al. The rna chaperone hfq is essential for the virulence of salmonella typhimurium[J]. Molecular Microbiology, 2007, 63(1):192-217. [33] Wang M C, Chien H F, Tsai Y L, et al. The RNA chaperone Hfq is involved in stress tolerance and virulence in uropathogenic Proteus mirabilis[J]. PLoS One, 2014, 9(1):e85626. Doi:10.1371/journal.pone.0085626. [34] Kim S, Hwang H, Kim K P, et al. The hfq plays important roles in virulence and stress adaptation in Cronobacter sakazakii ATCC 29544[J]. Infection and Immunity, 2015, 2015(9):03161-14. Doi:10.1128/IAI.03161-14. [35] Nakao H, Watanabe H, Nakayama S, et al. yst gene expression in Yersinia enterocolitica is positively regulated by a chromosomal region that is highly homologous to Escherichia coli host factor 1 gene(hfq)[J]. Mol Microbiol, 1995, 18(5):859-865. Doi:10.1111/j.1365-2958.1995.18050859.x. [36] Christiansen J K, Larsen M H, Ingmer H, et al. The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence[J]. J Bacteriol, 2004, 186(11):3355-3362. Doi:10.1128/JB.186.11.3355-3362.2004. [37] Wilms I, Moller P, Stock A M, et al. Hfq influences multiple transport systems and virulence in the plant pathogen Agrobacterium tumefaciens[J]. J Bacteriol, 2012, 194(19):5209-5217. Doi:10.1128/JB.00510-12. [38] Bibova I, Skopova K, Masin J, et al. The RNA chaperone Hfq is required for virulence of Bordetella pertussis[J]. Infect Immun, 2013, 81(11):4081-4090. Doi:10.1128/IAI.00345-13. [39] Sousa S A, Ramos C G, Moreira L M, et al. The hfq gene is required for stress resistance and full virulence of Burkholderia cepacia to the nematode Caenorhabditis elegans[J]. Microbiology, 2010, 156(Pt 3):896-908. Doi:10.1099/mic.0.035139-0. [40] Zeng Q, McNally R R, Sundin G W. Global small RNA chaperone Hfq and regulatory small RNAs are important virulence regulators in Erwinia amylovora[J]. J Bacteriol, 2013, 195(8):1706-1717. Doi:10.1128/JB.02056-12. [41] Meibom K L, Forslund A L, Kuoppa K, et al. Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis[J]. Infection and Immunity, 2009, 77(5):1866-1880. Doi:10.1128/IAI.01496-08. [42] Gangaiah D, Labandeira-Rey M, Zhang X, et al. Haemophilus ducreyi Hfq contributes to virulence gene regulation as cells enter stationary phase[J]. M Bio, 2014, 5(1):e01081-13. Doi:10.1128/mBio.01081-13. [43] Chiang M K, Lu M C, Liu L C, et al. Impact of Hfq on global gene expression and virulence in Klebsiella pneumoniae[J]. PLoS One, 2011, 6(7):e22248. Doi:10.1371/journal.pone.0022248. [44] Dietrich M, Munke R, Gottschald M, et al. The effect of hfq on global gene expression and virulence in Neisseria gonorrhoeae[J]. FEBS J, 2009, 276(19):5507-5520. Doi:10.1111/j.1742-4658.2009.07234.x. [45] Fantappie L, Metruccio M M, Seib K L, et al. The RNA chaperone Hfq is involved in stress response and virulence in Neisseria meningitidis and is a pleiotropic regulator of protein expression[J]. Infect Immun, 2009, 77(5):1842-1853. Doi:10.1128/IAI.01216-08. [46] Sharma A K, Payne S M. Induction of expression of hfq by DksA is essential for Shigella flexneri virulence[J]. Mol Microbiol, 2006, 62(2):469-79. Doi:10.1111/j.1365-2958.2006.05376.x. [47]Tsui H C, Leung H C, Winkler M E. Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12[J]. Molecular Microbiology, 1994, 13(1):35-49. Doi:10.1111/j.1365-2958.1994.tb00400.x. [48] Chambers J R, Bender K S. The RNA chaperone Hfq is important for growth and stress tolerance in Francisella novicida[J]. PLoS One, 2011, 6(5):e19797. Doi:10.1371/journal.pone.0019797. [49] Berghoff B A, Glaeser J, Sharma C M, et al. Contribution of Hfq to photooxidative stress resistance and global regulation in Rhodobacter sphaeroides[J]. Mol Microbiol, 2011, 80(6):1479-1495. Doi:10.1111/j.1365-2958.2011.07658.x. [50] Brennan C M, Keane M L, Hunt T M, et al. Shewanella oneidensis Hfq promotes exponential phase growth, stationary phase culture density, and cell survival[J]. BMC Microbiol, 2013, 13:33. Doi:10.1186/1471-2180-13-33. [51] Yang S, Pelletier D A, Lu T Y, et al. The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors[J]. BMC Microbiol, 2010, 10:135. Doi:10.1186/1471-2180-10-135. [52] Subashchandrabose S, Leveque R M, Kirkwood R N, et al. The RNA chaperone Hfq promotes fitness of Actinobacillus pleuropneumoniae during porcine pleuropneumonia[J]. Infect Immun, 2013, 81(8):2952-2961. Doi:10.1128/IAI.00392-13. [53] Fantappie L, Oriente F, Muzzi A, et al. A novel Hfq-dependent sRNA that is under FNR control and is synthesized in oxygen limitation in Neisseria meningitidis[J]. Mol Microbiol, 2011, 80(2):507-523. Doi:10.1111/j.1365-2958.2011.07592.x. [54] Barra-Bily L, Fontenelle C, Jan G, et al. Proteomic alterations explain phenotypic changes in Sinorhizobium meliloti lacking the RNA chaperone Hfq[J]. J Bacteriol, 2010, 192(6):1719-1729. Doi:10.1128/JB.01429-09. [55] Yamada J, Yamasaki S, Hirakawa H, et al. Impact of the RNA chaperone Hfq on multidrug resistance in Escherichia coli[J]. J Antimicrob Chemother, 2010, 65(5):853-858. Doi:10.1093/jac/dkq067. [56] Hayashi-Nishino M, Fukushima A, Nishino K. Impact of hfq on the intrinsic drug resistance of Salmonella enterica serovar typhimurium[J]. Front Microbiol, 2012, 3:205. Doi:10.3389/fmicb.2012.00205. [57] Maharjan R, McKenzie C, Yeung A, et al. The basis of antagonistic pleiotropy in Hfq mutations that have opposite effects on fitness at slow and fast growth rates[J]. Heredity(Edinb), 2013, 110(1):10-18. Doi:10.1038/hdy.2012.46. [58] Brennan C M, Mazzucca N Q, Mezoian T, et al. Reduced heme levels underlie the exponential growth defect of the Shewanella oneidensis hfq mutant[J]. PLoS One, 2014, 9(10):e109879. Doi:PONE-D-14-27358[pii]. [59] Wu X G, Duan H M, Tian T, et al. Effect of the hfq gene on 2,4-diacetylphloroglucinol production and the PcoI/PcoR quorum-sensing system in Pseudomonas fluorescens 2P24[J]. FEMS Microbiol Lett, 2010, 309(1):16-24. Doi:10.1111/j.1574-6968.2010.02009.x. [60] Gao M, Tang M, Guerich L, et al. Modulation of Sinorhizobium meliloti quorum sensing by Hfq-mediated post-transcriptional regulation of ExpR[J]. Environ Microbiol Rep, 2015, 7(1):148-154. Doi:10.1111/1758-2229.12235. [61] Bardill J P, Zhao X, Hammer B K. The Vibrio cholerae quorum sensing response is mediated by Hfq-dependent sRNA/mRNA base pairing interactions[J]. Mol Microbiol, 2011, 80(5):1381-1394. Doi:10.1111/j.1365-2958.2011.07655.x. [62] Lenz D H, Mok K C, Lilley B N, et al. The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae[J]. Cell, 2004, 118(1):69-82. Doi:10.1016/j.cell.2004.06.009. [63] Monteiro C, Papenfort K, Hentrich K, et al. Hfq and Hfq-dependent small RNAs are major contributors to multicellular development in Salmonella enterica serovar Typhimurium[J]. RNA Biology, 2012, 9(4):489-502. Doi:10.4161/rna.19682. [64] Rempe K A, Hinz A K, Vadyvaloo V. Hfq regulates biofilm gut blockage that facilitates flea-borne transmission of Yersinia pestis[J]. J Bacteriol, 2012, 194(8):2036-2040. Doi:10.1128/JB.06568-11. [65] Moller P, Overloper A, Forstner K U, et al. Profound impact of Hfq on nutrient acquisition, metabolism and motility in the plant pathogen Agrobacterium tumefaciens[J]. PLoS One, 2014, 9(10):e110427. Doi:10.1371/journal.pone.0110427. [66] Dienst D, Duhring U, Mollenkopf H J, et al. The cyanobacterial homologue of the RNA chaperone Hfq is essential for motility of Synechocystis sp. PCC 6803[J]. Microbiology, 2008, 154(Pt 10):3134-3143. Doi:10.1099/mic.0.2008/020222-0. [67] Puerta-Fernandez E, Vioque A. Hfq is required for optimal nitrate assimilation in the Cyanobacterium anabaena sp. strain PCC 7120[J]. J Bacteriol, 2011, 193(14):3546-3555. Doi:10.1128/JB.00254-11. [68] Gao M, Barnett M J, Long S R, et al. Role of the Sinorhizobium meliloti global regulator Hfq in gene regulation and symbiosis[J]. Mol Plant Microbe Interact, 2010, 23(4):355-365. Doi:10.1094/MPMI-23-4-0355. [69] Barra-Bily L, Pandey S P, Trautwetter A, et al. The Sinorhizobium meliloti RNA chaperone Hfq mediates symbiosis of S. meliloti and alfalfa[J]. J Bacteriol, 2010, 192(6):1710-1718. Doi:10.1128/JB.01427-09. [70] Torres-Quesada O, Oruezabal R I, Peregrina A, et al. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa[J]. BMC Microbiol, 2010, 10:71. Doi:10.1186/1471-2180-10-71. [71] Bibova I, Hot D, Keidel K, et al. Transcriptional profiling of Bordetella pertussis reveals requirement of RNA chaperone Hfq for type III secretion system functionality[J]. RNA Biol, 2015, 12(2):175-185. Doi:10.1080/15476286.2015.1017237. [72] Shakhnovich E A, Davis B M, Waldor M K. Hfq negatively regulates type III secretion in EHEC and several other pathogens[J]. Molecular Microbiology, 2009, 74(2):347-363. Doi:10.1111/j.1365-2958.2009.06856.x. [73] Niemann G S, Brown R N, Mushamiri I T, et al. RNA type III secretion signals that require Hfq[J]. J Bacteriol, 2013, 195(10):2119-2125. Doi:10.1128/JB.00024-13. [74] Xu G, Zhao Y, Du L, et al. Hfq regulates antibacterial antibiotic biosynthesis and extracellular lytic-enzyme production in Lysobacter enzymogenes OH11[J]. Microb Biotechnol, 2015, 8(3):499-509. Doi:10.1111/1751-7915.12246. [75] Wang G, Huang X, Li S, et al. The RNA chaperone Hfq regulates antibiotic biosynthesis in the rhizobacterium Pseudomonas aeruginosa M18[J]. J Bacteriol, 2012, 194(10):2443-2457. Doi:10.1128/JB.00029-12. [76] Matilla M A, Leeper F J, Salmond G P. Biosynthesis of the antifungal haterumalide, oocydin A, in Serratia, and its regulation by quorum sensing, RpoS and Hfq[J]. Environmental Microbiology, 2015, 2015(6):1462-2920. Doi:10.1111/1462-2920.12839. [77] Zhou M, Gao K, Zeng J, et al. Role of the RNA-binding protein Hfq in Serratia plymuthica[J]. Front Biosci(Elite Ed), 2012, 4:1263-1275. Doi:10.2741/e457. [78] Zhang Y, Hong G. Evidences of Hfq associates with tryptophanase and affects extracellular indole levels[J]. Acta Biochim Biophys Sin(Shanghai), 2009, 41(8):709-717. Doi:0.1093/abbs/ gmp059. [79] Cech G M, Pakula B, Kamrowska D, et al. Hfq protein deficiency in Escherichia coli affects ColE1-like but not lambda plasmid DNA replication[J]. Plasmid, 2014, 73:10-15. Doi:10.1016/j.plasmid.2014.04.005. [80] Ross J A, Trussler R S, Black M D, et al. Tn5 transposition in Escherichia coli is repressed by Hfq and activated by over-expression of the small non-coding RNA SgrS[J]. Mob DNA, 2014, 5(1):27. Doi:10.1186/s13100-014-0027-z. [81] Hess W R, Berghoff B A, Wilde A, et al. Riboregulators and the role of Hfq in photosynthetic bacteria[J]. RNA Biol, 2014, 11(5):413-426. Doi:10.4161/rna.28035. [82] Allam U S, Krishna M G, Lahiri A, et al. Salmonella enterica serovar Typhimurium lacking hfq gene confers protective immunity against murine typhoid[J]. PLoS One, 2011, 6(2):e16667. Doi:10.1371/journal.pone.0016667. [83] Schuergers N, Ruppert U, Watanabe S, et al. Binding of the RNA chaperone Hfq to the type IV pilus base is crucial for its function in Synechocystis sp. PCC 6803[J]. Molecular Microbiology, 2014, 92(4):840-852. Doi:10.1111/mmi.12595. [84] Nielsen J S, Lei L K, Ebersbach T, et al. Defining a role for Hfq in Gram-positive bacteria: evidence for Hfq-dependent antisense regulation in Listeria monocytogenes[J]. Nucleic Acids Res, 2010, 38(3):907-919. Doi:10.1093/nar/gkp1081. [85] Rochat T, Delumeau O, Figueroa-Bossi N, et al. Tracking the elusive function of Bacillus subtilis Hfq[J]. PLoS One, 2015, 10(4):e0124977. Doi:10.1371/journal.pone.0124977. [86] Sun X, Zhulin I, Wartell R M. Predicted structure and phyletic distribution of the RNA-binding protein Hfq[J]. Nucleic Acids Res, 2002, 30(17):3662-3671. Doi:10.1093/nar/gkf508. [87] Bohn C, Rigoulay C, Bouloc P. No detectable effect of RNA-binding protein Hfq absence in Staphylococcus aureus[J]. BMC Microbiology, 2007, 7(10):10. Doi:10.1186/1471-2180-7-10. [88] Dambach M, Irnov I, Winkler W C. Association of RNAs with Bacillus subtilis Hfq[J]. PLoS One, 2013, 8(2):e55156. Doi:10.1371/journal.pone.0055156. [89] Hammerle H, Amman F, Vecerek B, et al. Impact of Hfq on the Bacillus subtilis transcriptome[J]. PLoS One, 2014, 9(6):e98661. Doi:10.1371/journal.pone.0098661. [90] Fortas E, Piccirilli F, Malabirade A, et al. New insight into the structure and function of Hfq C-terminus[J]. Biosci Rep, 2015, 35(2):e00190. Doi:10.1042/BSR20140128. [91] Brennan R G, Link T M. Hfq structure, function and ligand binding[J]. Curr Opin Microbiol, 2007, 10(2):125-133. Doi:10.1016/j.mib.2007.03.015. [92] Murina V, Lekontseva N, Nikulin A. Hfq binds ribonucleotides in three different RNA-binding sites[J]. Acta Crystallogr D Biol Crystallogr, 2013, 69(Pt 8):1504-1513. Doi:10.1107/S090744491301010X. [93] Schulz E C, Barabas O. Structure of an Escherichia coli Hfq:RNA complex at 0.97 a resolution[J]. Acta Crystallogr F Struct Biol Commun, 2014, 70(Pt 11):1492-1497. Doi:10.1107/S2053230X14020044. [94] Obregon K A, Hoch C T, Sukhodolets M V. Sm-like protein Hfq: Composition of the native complex, modifications, and interactions[J]. Biochim Biophys Acta, 2015, 1854(8):950-966. Doi:10.1016/j.bbapap.2015.03.016. [95] Peng Y, Curtis J E, Fang X, et al. Structural model of an mRNA in complex with the bacterial chaperone Hfq[J]. Proc Natl Acad Sci U S A, 2014, 111(48):17134-17139. Doi:10.1073/pnas.1410114111. [96] Zeng Q, Sundin G W. Genome-wide identification of Hfq-regulated small RNAs in the fire blight pathogen Erwinia amylovora discovered small RNAs with virulence regulatory function[J]. BMC Genomics, 2014, 15(414):414. Doi:10.1186/1471-2164-15-414. [97] Lenco J, Tambor V, Link M, et al. Changes in proteome of the Deltahfq strain derived from Francisella tularensis LVS correspond with its attenuated phenotype[J]. Proteomics, 2014, 14(21-22):2400-2409. Doi:10.1002/pmic.201400198. [98] Liu H, Wang Q, Liu Q, et al. Roles of Hfq in the stress adaptation and virulence in fish pathogen Vibrio alginolyticus and its potential application as a target for live attenuated vaccine[J]. Appl Microbiol Biotechnol, 2011, 91(2):353-364. Doi:10.1007/s00253-011-3286-3. |
[1] | 李飞,解静聪,李琦,张雪松,赵林果. 木聚糖酶XynB分子Ser/Thr 平面导入精氨酸对酶热稳定性的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(04): 107-112. |
[2] | 张冰,向冰冰,崔岱宗,赵敏. 枯草芽孢杆菌WD-23 β-甘露聚糖酶的纯化及其酶学性质[J]. 南京林业大学学报(自然科学版), 2014, 38(03): 88-92. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||