[1] 叶华俊,刘立鹏,夏阿林,等. 在线近红外光谱分析仪的研制及应用[J]. 仪器仪表学报,2009,30(3):531-535.
Ye H J, Liu L P, Xia A L, et al. Development and application of on-line near infrared spectroscopy analyzer[J]. Chinese Journal of Scientific Instrument, 2009, 30(3): 531-535.
[2] 宁井铭,宛晓春,张正竹,等. 近红外光谱技术结合人工神经网络判别普洱茶发酵程度[J]. 农业工程学报,2013,29(11):255-260.
Ning J M, Wan X C, Zhang Z Z, et al. Discriminating fermentation degree of Pu'er tea based on NIR spectroscopy and artificial neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(11): 255-260.
[3] 葛晓雯,王梦,李耀翔. 近红外技术在土壤化学组分预测中的应用研究综述[J]. 森林工程,2013,29(6):72-76.
Ge X W, Wang M, Li Y X. Review on the NIR-based modeling of soil chemical constituents[J]. Forest Engineering, 2013, 29(6): 72-76.
[4] 李旭东,张根明. 近红外光谱分析技术的发展与应用研究[J]. 重庆科技学院学报(自然科学版),2008,10(2):33-35.
Li X D, Zhang G M. The progress and application research of near infrared spectroscopy analytical technique[J]. Journal of Chongqing University of Science and Technology(Natural Science Edition), 2008, 10(2): 33-35.
[5] Chen H, Tan C, Wu T, et al. Discrimination between authentic and adulterated liquors by near-infrared spectroscopy and ensemble classification[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 130: 245-249.
[6] 黄秀玲,郑加强,赵茂程. 水果分级支撑技术的研究进展[J]. 南京林业大学学报(自然科学版),2007,31(2):123-126.Doi:10.3969/j.issn.1000.2006.2007.02.028.
Huang X L, Zheng J Q, Zhao M C. Review on fruit grading supporting technology[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2007, 31(2): 123-126.
[7] Kainerstorfer J M, Sassaroli A, Hallacoglu B, et al. Practical steps for applying a new dynamic model to near-infrared spectroscopy measurements of hemodynamic oscillations and transient changes: implications for cerebrovascular and functional brain studies[J]. Academic Radiology, 2014, 21(2): 185-196.
[8] Raymond C A, Poke F S. Predicting extractives, lignin, and cellulose contents using near infrared spectroscopy on solid wood in Eucalyptus globulus[J]. Journal of Wood Chemistry and Technology, 2006, 26(2): 187-199.
[9] 刘镇波,孙凤亮,Wang X M,等. 基于近红外光谱法的人工林杨木木质素含量预测[J]. 南京林业大学学报(自然科学版),2013,37(6):121-126.Doi:10.3969/j.issn.1000-2006.2013.06.024.
Liu Z B, Sun F L, Wang X M, et al. Prediction of lignin content of plantation poplar using near infrared spectroscopy method[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(6): 121-126.
[10] Rousset P, Davrieux F, Macedo L, et al. Characterisation of the torrefaction of beech wood using NIRS: combined effects of temperature and duration[J]. Biomass and Bioenergy, 2011, 35(3): 1219-1226.
[11] Inagaki T, Schwanninger M, Kato R, et al. Eucalyptus camaldulensis density and fiber length estimated by near-infrared spectroscopy[J]. Wood Science and Technology, 2012, 46(1-3): 143-155.
[12] Alves A, Santos A, Rozenberg P, et al. Common near infrared—based partial least squares regression model for the prediction of wood density of Pinus pinaster and Larix215;eurolepis[J]. Wood Science and Technology, 2012, 46(1-3): 157-175.
[13] 赵荣军,霍小梅,上官蔚蔚,等. 近红外光谱法预测粗皮桉木材气干密度的影响因素分析[J]. 光谱学与光谱分析,2011, 31(11):2948-2951.
Zhao R J, Huo X M, Shangguan W W, et al. Influence factor for prediction of air-dry density of Eucalyptus Pellita by near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2011, 31(11): 2948-2951.
[14] 李耀翔,徐浩凯. 榆树木材基本密度近红外模型优化的研究[J]. 云南大学学报(自然科学版),2015,37(1):155-162.
Li Y X, Xu H K.A study on the optimization of the model of NIR-based elm wood density [J]. Journal of Yunnan University(Natural Science Edition), 2015, 37(1): 155-162.
[15] 王学顺,戚大伟,黄安民. 基于小波模极大值的木材近红外光谱去噪[J]. 林业科学,2008,44(10):109-112.
Wang X S, Qi D W, Huang A M,Denoising of near infrared spectroscopy in wood based on wavelet transform modules maximum[J]. Scientia Silvae Sinicae, 2008, 44(10): 109-112.
[16] 王学顺,戚大伟,黄安民. 木材近红外光谱小波阈值去噪方法[J]. 东北林业大学学报,2009,37(2):32-34.
Wang X S, Qi D W, Huang A M. Threshold denoising of near infrared spectroscopy of wood based on wavelet transform[J]. Journal of Northeast Forestry University, 2009, 37(2): 32-34.
[17] 郝斯琪,宋博骐,李湃,等. 基于近红外光谱与 BP 神经网络预测落叶松木屑的含水率[J]. 森林工程,2012,28(4):9-11.
Hao S Q, Song B Q, Li P, et al. Prediction of sawdust water content of Dahurian larch based on NIRS and BP neural network[J]. Forest Engineering, 2012, 28(4): 9-11.
[18] David C H. Technical Guide [Z]. Colorado: Analytical Spectral Devices, 1999.
[19] 葛哲学,沙威. 小波分析理论与MATLAB R2007实现[M]. 北京:电子工业出版社,2007:29-30.
[20] 曾九孙,刘祥官,罗世华,等. 主成分回归和偏最小二乘法在高炉冶炼中的应用[J].浙江大学学报(理学版),2009,36(1):33-36.
Zeng J S, Liu X G, Luo S H,et al. Application of principal component regression and partial least square in blast furnace iron-making[J]. Journal of Zhejiang University(Science Edition), 2009, 36(1): 33-36.
[21] 邱素君,何雁,张国松,等. 近红外光谱快速测定柴胡总皂苷肠溶片包衣膜厚度研究[J]. 中国药学杂志,2013,48(24):2128-2133.
Qiu S J, He Y, Zhang G S, et al. Fast determination of coating thickness of the total saponin of radix bupleuri enteric coated tablets by NIRS[J]. Chinese Pharmaceutical Journal, 2013, 48(24): 2128-2133.
[22] 张鹏. 基于小波变换的落叶松木材力学性质近红外模型研究[D]. 哈尔滨:东北林业大学,2014.
Zhang P. Study of near infrared spectroscopy model for predicting mechanical properties of larch wood based on wavelet transform[D]. Harbin: Northeast Forestry University, 2014.
[23] 贺文明,薛崇昀,聂怡,等. 利用近红外光谱技术快速测定木材水分和气干密度的研究[J]. 中华纸业,2010,31(6):12-16.
He W M, Xue C J, Nie Y, et al. The study of rapid prediction of moisture content and air-dried density of wood by using near infrared spectroscopy technology [J]. China Pulp & Paper Industry, 2010, 31(6): 12-16.
[24] 王玉荣,江泽慧,费本华,等. 近红外光谱预测棕榈藤藤条基本密度研究[J]. 光谱学与光谱分析,2008,28(10):119-120.
Wang Y R, Jiang Z H, Fei B H, et al. Estimation of basic density of rattan canes by near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2008, 28(10):119-120.
[25] 林振兴,邬蓓蕾,王豪,等. PDS用于不同温度下的近红外光谱模型传递研究[J]. 分析测试学报,2008,27(12):1330-1333.
Lin Z X, Wu B L, Wang H,et al. Study on near infrared spectroscopy model transfer by using piecewise direct standardization at different temperature[J]. Journal of Instrumental Analysis, 2008, 27(12): 1330-1333.
[26] 黄安民,费本华,江泽慧,等. 表面粗糙度对近红外光谱分析木材密度的影响[J]. 光谱学与光谱分析,2007,27(9):1700-1702.
Huang A M, Fei B H, Jiang Z H,et al. Influence of sample surface roughness on mathematical model of NIR quantitative analysis of wood density[J]. Spectroscopy and Spectral Analysis, 2007, 27(9): 1700-1702. |