南京林业大学学报(自然科学版) ›› 2016, Vol. 40 ›› Issue (06): 167-173.doi: 10.3969/j.issn.1000-2006.2016.06.026
王 姮,李明诗*
出版日期:
2016-12-18
发布日期:
2016-12-18
基金资助:
WANG Heng,LI Mingshi*
Online:
2016-12-18
Published:
2016-12-18
摘要: 森林生态系统是陆地生态系统的主体,其对减少大气中的CO2浓度从而减缓全球变暖有着决定性的作用。为了探究气候变化对森林生态系统的影响以及森林生态系统的反馈机制,发展合理的森林经营策略以应对气候变化,笔者综述了国内外有关气候变化对森林生态系统影响的相关研究方法与成果,重点讨论了气候变化对森林结构、组成和分布、森林生产力、森林碳库、森林生态系统生物多样性、生态系统生态服务功能等方面的影响,论述了森林生态系统对气候变化的反馈机制,并指出了现有研究的不足之处,提出了适应或者减缓气候变化对森林生态系统影响的森林经营策略,主要包括:①坚决贯彻实施退耕还林政策; ②加强保护天然林; ③制定科学的森林经营对策; ④加速我国碳汇林业的发展。
中图分类号:
王姮,李明诗. 气候变化对森林生态系统的主要影响述评[J]. 南京林业大学学报(自然科学版), 2016, 40(06): 167-173.
WANG Heng,LI Mingshi. A review of the major impacts of climate change on forest ecosystems[J].Journal of Nanjing Forestry University (Natural Science Edition), 2016, 40(06): 167-173.DOI: 10.3969/j.issn.1000-2006.2016.06.026.
[1] 李伟, 王秋华, 沈立新. 气候变化对森林生态系统的影响及应对气候变化的森林可持续发展[J]. 林业调查规划, 2014, 39(1): 94-97,114. Doi:10.3969/j.issn.1671-3168.2014.01.022.
Li W, Wang Q H, Shen L X. Impact of climate change on forest ecosystems and countermeasures of sustainable forest development[J]. Forest Inventory and Planning, 2014, 39(1): 94-97,114.
[2] Winjum J K, Schroeder P E. Forest plantations of the world: their extent, ecological attributes, and carbon storage[J]. Agricultural and Forest Meteorology, 1997, 84(1): 153-167. Doi:10.1016/s0168-1923(96)02383-0. [3] Sparks T H, Carey P D. The responses of species to climate over two centuries: an analysis of the Marsham phenological record, 1736-1947[J]. The Journal of Ecology, 1995, 83(2): 321. Doi:10.2307/2261570. [4] Richardson A D, Keenan T F, Migliavacca M, et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system[J]. Agricultural and Forest Meteorology, 2013, 169: 156-173. Doi:10.1016/j.agrformet.2012.09.012. [5] Menzel A, Sparks T H, Estrella N, et al. European phenological response to climate change matches the warming pattern[J]. Global Change Biology, 2006(10): 1969-1976. Doi:10.1111/j.1365-2486.2006.01193.x. [6] 方修琦,余卫红.物侯对全球变暖响应的研究综述[J].地理科学进展,2002,17(5):714-719. Fang X Q, Yu W H. A review of phenology responses to global climate warming[J]. Advance in Earth Sciences, 2002, 17(5): 714-717. [7] Menzel A, Sparks T H, Estrella N, et al. European phenological response to climate change matches the warming pattern[J]. Global Change Biology, 2006(10): 1969-1976. Doi:10.1111/j.1365-2486.2006.01193.x. [8] Thompson R, Clark R M. Is spring starting earlier?[J]. The Holocene, 2008, 18(1): 95-104. Doi:10.1177/0959683607085599. [9] Miller-Rushing A J, Primack R B. Global warming and flowering times in Thoreau's Concord: a community perspective[J]. Ecology, 2008, 89(2): 332-341. Doi:10.1890/07-0068.1. [10] 郑景云, 葛全胜, 赵会霞. 近40年中国植物物候对气候变化的响应研究[J]. 中国农业气象, 2003, 24(1): 28-32. Doi:10.3969/j.issn.1000-6362.2003.01.009. Zheng J Y, Ge Q S, Zhao H X. Changes of plant phenological period and its response to climate change for the last 40 years in china[J]. Chinese Journal of Agrometeorology, 2003, 24(1): 28-32. [11] Zheng J, Ge Q, Hao Z. Impacts of climate warming on plants phenophases in China for the last 40 years[J]. Sci Bull, 2002, 47(21): 1826-1831. Doi:10.1007/bf03183851. [12] Matsumoto K, Ohta T, Irasawa M, et al. Climate change and extension of the Ginkgo biloba L. growing season in Japan[J]. Global Change Biol, 2003, 9(11): 1634-1642. Doi:10.1046/j.1365-2486.2003.00688.x. [13] Penuelas J, Filella I, Comas P. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region[J]. Global Change Biol, 2002, 8(6): 531-544. Doi:10.1046/j.1365-2486.2002.00489.x. [14] 蒋菊芳, 王鹤龄, 魏育国, 等. 河西走廊东部不同类型植物物候对气候变化的响应[J]. 中国农业气象, 2011, 32(4): 543-549. Doi:10.3969/j.issn.1000-6362.2011.04.011. Jiang J F, Wang H L, Wei Y G, et al. Response of different type plants' phenology to climate change in east of Hexi Corridor[J]. Chinese Journal of Agrometeorology, 2011, 32(4): 543-549. [15] Kozlov M V, Berlina N G. Decline in length of the summer season on the Kola Peninsula, Russia[J]. Climatic Change, 2002, 54(4): 387-398. [16] 吴卓.气候变化对我国红壤丘陵区森林生态系统结构的影响[D].北京:首都师范大学, 2014. [17] Wang W J, He H S, Thompson III F R, et al. Landscape-and regional-scale shifts in forest composition under climate change in the Central Hardwood Region of the United States[J]. Landscape Ecology, 2016, 31(1): 149-163.Doi:10.1007/s10980-015-0294-1. [18] Sevegnani L, Uhlmann A, Gasper A L D, et al. Climate affects, the structure of maixed rain forest in southern sector of Atlantic do main in Braizil[J]. Acta Oecologica, 2016, 77:1409-117. [19] Davis M B, Shaw R G. Range shifts and adaptive responses to quaternary climate change[J]. Science, 2001, 292(5517): 673-679. Doi:10.1126/science.292.5517.673. [20] Peñuelas J, Boada M. A global change-induced biome shift in the Montseny Mountains(NE Spain)[J]. Global Change Biol, 2003, 9(2): 131-140. Doi:10.1046/j.1365-2486.2003.00566.x. [21] 吴正方. 东北阔叶红松林分布区生态气候适宜性及全球气候变化影响评价[J]. 应用生态学报, 2003, 14(5): 771-775. Wu Z F. Assessment of eco-climatic suitability and climate change impacts of/on broad-leaved korean pine forest in northeast china[J]. Chinese Journal of Applied Ecology, 2003, 14(5): 771-775. [22] 刘丹, 那继海, 杜春英, 等. 1961-2003年黑龙江省主要树种的生态地理分布变化[J]. 气候变化研究进展, 2007, 3(2): 100-105. Doi:10.3969/j.issn.1673-1719.2007.02.007. Liu D, Na J H, Du C Y, et al. Changes in eco-geographical distributions of major forestry species in Heilongjiang Province during 1961—2003[J]. Advances in Climate Change Research, 2007, 3(2): 100-105. Doi:10.3969/j.issn.1673-1719.2007.02.007. [23] Walther G R, Beißner S, Burga C A. Trends in the upward shift of alpine plants[J]. Journal of Vegetation Science, 2005, 16(5): 541-548. Doi:10.1111/j.1654-1103.2005.tb02394.x. [24] 王娟, 倪健. 植物种分布的模拟研究进展[J]. 植物生态学报, 2006, 30(6): 1040-1053. [25] 郑刚. 基于ANN和CA的气候变化对中国森林分布影响的模拟与预测[D]. 重庆:西南大学, 2010 [26] Smith T M, Halpin P N, Shugart H H,et al.Global forest[G]//Strzepek K M, Smith J B.As climate change:international impacts and implications.London:Cambridge University Press,1995:59-78. [27] Upgupta S, Sharma J, Jayaraman M, et al. Climate change impact and vulnerability assessment of forests in the Indian Western Himalayan region: a case study of Himachal Pradesh, India[J]. Climate Risk Management, 2015, 10: 63-76. Doi:10.1016/j.crm.2015.08.002. [28] 李峰, 周广胜, 曹铭昌. 兴安落叶松地理分布对气候变化响应的模拟[J]. 应用生态学报, 2006, 17(12): 2255-2260. Li F, Zhou G S, Cao M C. Responses of Larix gmelinii geographical distribution to future climate change: a simulation study[J]. Chinese Journal of Applied Ecology, 2006, 17(12): 2255-2260. [29] 牟艳玲,赵文龙,陈亚雄,等.中国北方森林潜在分布及其对气候变化响应的模拟[J].兰州大学学报(自然科学版),2010,46(S1):25-32. [30] Boisvenue C É L, Running S W. Impacts of climate change on natural forest productivity-evidence since the middle of the 20th century[J]. Global Change Biol, 2006, 12(5): 862-882. Doi:10.1111/j.1365-2486.2006.01134.x. [31] 李双元. 基于 CASA 模型的赣江流域植被净初级生产力估算研究[D]. 兰州:兰州交通大学, 2014. [32] Bazzaz F A, Miao S L, Wayne P M. CO2-induced growth enhancements of co-occurring tree species decline at different rates[J]. Oecologia, 1993, 96(4): 478-482. Doi:10.1007/bf00320504. [33] Kimball B A, Mauney J R, Nakayama F S, et al. Effects of increasing atmospheric CO2 on vegetation[J]. Vegetatio, 1993, 104(1): 65-75. Doi:10.1007/bf00048145. [34] Díaz S, Grime J P, Harris J, et al. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide[J]. Nature, 1993, 364(6438): 616-617. Doi:10.1038/364616a0. [35] Fritschi F B. Carbon dioxide and temperature effects on forage establishment: photosynthesis and biomass production[J]. Glob Change Biol, 1999, 5(4): 441. Doi:10.1046/j.1365-2486.1999.00238.x. [36] 戴尔阜, 李双元, 吴卓, 等. 中国南方红壤丘陵区植被净初级生产力空间分布及其与气候因子的关系——以江西省泰和县为例[J]. 地理研究, 2015, 34(7): 1222-1234. Doi:10.11821/dlyj201507003. Dai E F, Li S Y, Wu Z, et al. Spatial pattern of net primary productivity and its relationship with climatic factors in hilly red soil region of southern china: a case study in Taihe County, Jiangxi Province[J]. Geographical Research, 2015, 34(7): 1222-1234. [37] Clark D A, Piper S C, Keeling C D, et al. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984—2000[J]. Proc Natl Acad Sci USA, 2003, 100(10): 5852-5857. Doi:10.1073/pnas.0935903100. [38] Lobo A, Maisongrande P. Stratified analysis of satellite imagery of SW Europe during summer 2003: the differential response of vegetation classes to increased water deficit[J]. Hydrol Earth Syst Sci, 2006, 10(2): 151-164. Doi:10.5194/hess-10-151-2006. [39] Tian H, Melillo J M, Kicklighter D W, et al. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems[J]. Global Ecology and Biogeography, 2001(4). Doi:10.1046/j.1365-2699.2000.00198.x. [40] Alig R J, Adams D M, McCarl B A. Projecting impacts of global climate change on the US forest and agriculture sectors and carbon budgets[J]. Forest Ecology and Management, 2002, 169(1): 3-14. Doi:10.1016/s0378-1127(02)00290-6. [41] Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003, 300(5625): 1560-1563. Doi:10.1126/science.1082750. [42] Wilsey B J, McNaughton S J, Coleman J S. Will increases in atmospheric CO2 affect regrowth following grazing in C4 grasses from tropical grasslands? A test with Sporobolus kentrophyllus[J]. Oecologia, 1994, 99(1): 141-144. Doi:10.1007/bf00317094. [43] 谷晓平, 黄玫, 季劲钧, 等. 近20年气候变化对西南地区植被净初级生产力的影响[J]. 自然资源学报, 2007, 22(2): 251-259. Doi:10.3321/j.issn:1000-3037.2007.02.012. Gu X P, Huang M, Ji J J, et al. The influence of climate change on vegetation net primary productivity in southwestern China during recent 20 years period[J]. Journal of Natural Resources, 2007, 22(2): 251-259. [44] Sohngen B, Sedjo R. Impacts of climate change on forest product markets: implications for North American producers[J]. The Forestry Chronicle, 2005, 81(5): 669-674. Doi:10.5558/tfc81669-5. [45] Saitoh T M, Nagai S, Yoshino J, et al. Effects of canopy phenology on deciduous overstory and evergreen understory carbon budgets in a cool-temperate forest ecosystem under ongoing climate change[J]. Ecol Res, 2014, 30(2): 267-277. Doi:10.1007/s11284-014-1229-z. [46] Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production[J]. Nature, 1993, 363(6426): 234-240. Doi:10.1038/363234a0. [47] 刘世荣, 郭泉水, 王兵. 中国森林生产力对气候变化响应的预测研究[J]. 生态学报, 1998, 18(5): 478-483. Doi:10.3321/j.issn:1000-0933.1998.05.005. Liu S B, Guo Q S, Wang B. Prediction of net primary productivity of forests in china in response to climate change[J]. Acta Ecologica Sinica, 1998, 18(5): 478-483. [48] 方精云. 中国森林生产力及其对全球气候变化的响应[J]. 植物生态学报, 2000, 24(5): 513-517. [49] Shanin V N, Mikhaǐlov A V, Bykhovets S S, et al. Global climate change and carbon balance in forest ecosystems of boreal zones: imitating modeling as a forecast tool[J]. Izv Akad Nauk Ser Biol, 2010(6): 719-730. Doi:10.1134/s1062359010060105. [50] Nabuurs G J, Pussinen A, Karjalainen T, et al. Stemwood volume increment changes in European forests due to climate change:a simulation study with the EFISCEN model[J]. Global Change Biology, 2002(4): 304-316. Doi:10.1046/j.1354-1013.2001.00470.x. [51] Tan K, Piao S, Peng C, et al. Satellite-based estimation of biomass carbon stocks for northeast China's forests between 1982 and 1999[J]. Forest Ecology and Management, 2007, 240(1): 114-121. Doi:10.1016/j.foreco.2006.12.018. [52] Xiao X, Kicklighter D W, Melillo J M, et al. Linking a global terrestrial biogeochemical model and a 2-dimensional climate model: implications for the global carbon budget[J]. Tellus B, 1997, 49(1): 18-37. Doi:10.1034/j.1600-0889.49.issue1.2.x. [53] Zhou L, Wang S Q,Ju W M, et al. Assessment of carbon dynamics of forest ecosystems in the Poyang Lake Basin responding to afforestation and future climate change[J]. Journal of Resources and Ecology, 2013, 4(1): 11-19. Doi:10.5814/j.issn.1674-764x.2013.01.002. [54] Cao M, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J]. Nature, 1998, 393(6682): 249-252. [55] Mueller-Dombois D. Potential effects of the increase in carbon dioxide and climate change on the dynamics of vegetation[J]. Water, Air & Soil Pollution, 1992, 64(1): 61-79. Doi:10.1007/bf00477096. [56] Thom D, Rammer W, Dirnböck T, et al. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape[J]. Journal of Applied Ecology, 2016. [57] Ma W, Liang J, Cumming J R, et al. Fundamental shifts of central hardwood forests under climate change[J]. Ecological Modelling, 2016, 332: 28-41. Doi:10.1016/j.ecolmodel.2016.03.021. [58] 任海, 张倩媚, 彭少麟, 等. 植物入侵与其它全球变化因子间的相互作用[J]. 热带地理, 2002, 22(3): 275-278. Doi:10.3969/j.issn.1001-5221.2002.03.019. Ren H, Zhang Q M, Peng S L, et al. The interaction between plant invasion and other global change factors[J]. Tropical Geography, 2002, 22(3): 275-278. [59] 伍米拉. 全球气候变化与生物入侵[J]. 生物学通报, 2012, 47(1): 4-6. Doi:10.3969/j.issn.0006-3193.2012.01.002. [60] Sang W G, Bai F. Vascular diversity patterns of forest ecosystem before and after a 43-year interval under changing climate conditions in the Changbaishan Nature Reserve, Northeastern China[J]. Plant Ecol, 2008, 201(1): 115-130. Doi:10.1007/s11258-008-9504-0. [61] Taylor S, Kumar L. Potential distribution of an invasive species under climate change scenarios using CLIMEX and soil drainage: a case study of Lantana camara L. in Queensland, Australia[J]. J Environ Manage, 2013, 114: 414-422. Doi:10.1016/j.jenvman.2012.10.039. [62] 栾兆平. 气候变化与中国北方森林恢复和经营[J]. 内蒙古林业调查设计, 2007, 30(5): 47-49,74. Doi:10.3969/j.issn.1006-6993.2007.05.020. Luan Z P. Climate change and forest restoration and management in northern china[J]. Inner Mongolia Forestry Investigation and Design, 2007, 30(5): 47-49,74. [63] 张明军, 周立华. 气候变化对中国森林生态系统服务价值的影响[J]. 干旱区资源与环境, 2004, 18(2): 40-43. Doi:10.3969/j.issn.1003-7578.2004.02.008. Zhang M J, Zhou L H. The influence of climate change on the value of chinese forest ecosystem services[J]. Journal of Arid Land Resources and Environment, 2004, 18(2): 40-43. [64] Costanza R, D'Arge R, Groot R D, et al. The value of the world's ecosystem services and natural capital[J]. Nature, 1997, 387(15):253-260. Doi:10.1016/S0921-8009(98)00020-2. [65] Ding H, Chiabai A, Silvestri S, et al. Valuing climate change impacts on European forest ecosystems[J]. Ecosystem Services, 2016, 18: 141-153. Doi:10.1016/j.ecoser.2016.02.039. [66] Ray D, Bathgate S, Moseley D, et al. Comparing the provision of ecosystem services in plantation forests under alternative climate change adaptation management options in Wales[J]. Regional Environmental Change, 2014, 15(8): 1501-1513. Doi:10.1007/s10113-014-0644-6. [67] 赵凤君, 王明玉, 舒立福, 等. 气候变化对林火动态的影响研究进展[J]. 气候变化研究进展, 2009, 5(1): 50-55. Doi:10.3969/j.issn.1673-1719.2009.01.010. Zhao F J, Wang M Y, Shu L F, et al. Progress in studies on influences of climate change on forest fire regime[J]. Advances in Climate Change Research, 2009, 5(1): 50-55. [68] 郭天峰, 周宇飞. 森林火灾与气候变化[J]. 森林防火, 2015(3): 34-37. Doi:10.3969/j.issn.1002-2511.2015.03.012. [69] 袁建. 气候变化对重庆森林火灾的影响以及森林可燃物遥感分类[D]. 临安:浙江农林大学, 2013. [70] 李祎君, 王春乙, 赵蓓, 等. 气候变化对中国农业气象灾害与病虫害的影响[J]. 农业工程学报, 2010, 26(S1): 263-271. [71] 程功, 吕全, 冯益明, 等. 气候变化背景下松材线虫在中国分布的时空变化预测[J]. 林业科学, 2015, 51(6): 119-126. Doi:10.11707/j.1001-7488.20150614. Cheng G, LV Q, Feng Y M, et al. Temporal and spatial dynamic pattern of pine wilt disease distribution in china predicted under climate change scenario[J]. Scientia Silvae Sinicae, 2015, 51(6): 119-126. [72] 冯瑞芳, 杨万勤, 张健. 人工林经营与全球变化减缓[J]. 生态学报, 2006, 26(11): 3870-3877. Doi:10.3321/j.issn:1000-0933.2006.11.046. Feng R F, Yang W Q, Zhang J. Artificial forest management for global change mitigation[J]. Acta Ecologica Sinica, 2006, 26(11): 3870-3877. [73] 侯美亭. 认识森林对气候变化的反馈作用[J]. 大自然, 2014(1): 10-13. Doi:10.3969/j.issn.0255-7800.2014.01.004. [74] Fang J, Chen A, Peng C, et al. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292(5525): 2320-2322. Doi:10.1126/science.1058629. [75] Bush M B, Silman M R, Urrego D H. 48,000 years of climate and forest change in a biodiversity hot spot[J]. Science, 2004, 303(5659): 827-829. Doi:10.1126/science.1090795. [76] 符淙斌, 袁慧玲. 恢复自然植被对东亚夏季气候和环境影响的一个虚拟试验[J]. 科学通报, 2001, 46(8): 691-695. Doi:10.3321/j.issn:0023-074X.2001.08.018. [77] 刘效东,周国逸,陈修治,等.南亚热带森林演替过程中小气候的改变及对气候变化的响应[J].生态学报, 2014, 34(10): 2755-2764. [78] 刘世荣, 温远光, 蔡道雄, 等. 气候变化对森林的影响与多尺度适应性管理研究进展[J]. 广西科学, 2014, 21(5): 419-435. [79] 蒋桂娟, 郑小贤. 森林生态系统适应性经营研究[J]. 林业调查规划, 2011, 36(6): 52-55,67. Doi:10.3969/j.issn.1671-3168.2011.06.014. Jiang G J, Zheng X X. Adaptability management of forest eco-system[J]. Forest Inventory and Planning, 2011, 36(6): 52-55,67. [80] 张新俊, 张信拴. 浅谈碳汇林业在气候变化应对中的作用[J]. 现代农业, 2015(2): 103-104. Doi:10.3969/j.issn.1008-0708.2015.02.068. |
[1] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[2] | 鲁旭东, 董禹然, 李垚, 毛岭峰. 中国亚热带杉木人工林不同林分发育阶段的群落构建机制[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 67-73. |
[3] | 邢冰冰, 李垚, 毛岭峰. 植物功能性状系统发育保守性的类群和地理分异研究——以中国被子植物最大株高为例[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 59-66. |
[4] | 萨如拉, 王子瑞, 滑永春, 呼日查, 刘磊, 高明龙, 于晓雨. 基于结构方程模型的大兴安岭北部天然林森林生态系统恢复能力评价研究[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 196-204. |
[5] | 路文燕, 董灵波, 田园, 汪莎杉, 曲宣怡, 魏巍, 刘兆刚. 基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 157-165. |
[6] | 宋歌, 韩芳, 许景伟, 杨志军, 穆豪祥, 王志勇, 王哲. 基于LandUSEM模型的山东沿海防护林树种分布适宜性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 42-50. |
[7] | 邹朋峻, 关庆伟, 袁在翔, 谷雨晴, 吴茜, 牛莹莹, 陈霞, 金雪梅. 紫金山南麓枫香种群结构与动态特征[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 157-163. |
[8] | 孙美佳, 周志勇, 王勇强, 沈颖, 夏威. 有机物添加对山西太岳山油松林土壤呼吸及碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 67-75. |
[9] | 姚楠, 刘广全, 姚顺波, 贾磊, 林颖, 邓元杰, 侯孟阳. 基于坡度视角的黄土高原退耕还林(草)工程碳汇效应分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 180-188. |
[10] | 王麒淞, 国庆喜. 吉林东部天然次生林下光强衰减的空间分布特征[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 101-108. |
[11] | 邹晓明, 王国兵, 葛之葳, 谢友超, 阮宏华, 吴小巧, 杨艳. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 167-176. |
[12] | 徐晨, 阮宏华, 吴小巧, 谢友超, 杨艳. 干旱影响森林土壤有机碳周转及积累的研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 195-206. |
[13] | 张瑞婷, 杨金艳, 阮宏华. 树干液流对环境变化响应研究的整合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 113-120. |
[14] | 李林珂, 王一诺, 薛潇, 张文, 吴焦焦, 高岚, 谭星, 荣星宇, 段儒蓉, 刘芸. 黄栌光合和呈色特性对重庆阴雨天气的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 95-103. |
[15] | 夏捷, 陈胜, 吴一凡, 张玮, 谢锦忠. 种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 127-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||