【目的】揭示竹子地下茎生长发育的分子机制。【方法】利用高通量转录组测序对矢竹含不同发育阶段节的地下茎转录组图谱进行了分析研究,并利用qRT-PCR对节间生长相关基因进行表达模式分析。【结果】共获得了11 976 条平均长度为1 008 bp的单基因簇(unigenes)。NCBI注释显示,63.8%的单基因簇具有注释结果,其中16 254 条unigenes被注释到137 个KEGG(京都基因与基因组百科全书)代谢通路中。MapMan分析共获得了1 864 个转录因子及603 个激素代谢及信号转导相关单基因簇。在功能基因方面,共获得564 个与细胞壁构建相关的代谢基因,其中92 个与木质素合成相关。此外,对9 个与赤霉素、细胞壁合成及细胞骨架组织相关的基因,通过实时荧光定量PCR,分析了它们在节间不同发育阶段的表达模式。结果显示:细胞壁、细胞骨架下游功能相关基因在矢竹地下茎节间快速生长阶段表达最高; 而赤霉素合成及信号传导相关基因则在节间伸长起始阶段最高。【结论】矢竹地下茎生长发育受到从各类激素、转录因子到其下游功能基因等组成的复杂分子网络的协同调控。
Abstract
【Objective】Describe the molecular basis of bamboo rhizome development. 【Methods】 We used next-generation sequencing technology and qRT-PCR to analyze the transcriptome profile of the underground stems of Pseudosasa japonica and the expression pattern of genes related to internode elongation, respectively. 【Results】 A total of 119 767 unigenes, with an average length of 1 008 bp were determined, 63.8% of which had annotated results. A total of 16 254 unigenes were annotated to 137 KEGG(kyo to Encyclopedia of Genes and Genomes)pathways. MapMan software identified 1 864 transcription factors, 603 hormone related genes, and 564 cell-wall building related genes, including 92 unigenes related to lignin biosynthesis. The qRT-PCR analysis showed that, among the nine genes used for detecting, gibberellin-related genes had the highest expression level in the elongation initiation stage of internode development, whereas cell wall growth- and cytoskeleton-related genes had the strongest expression in the rapid elongation of internodes. 【Conclusion】 These results illustrate the molecular basis for rhizome development in Ps. japonica. The molecular mechanism underlying the development of rhizomes is a complex network consisting of hormones, transcription factors and downstream functional genes.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 熊文愈, 丁祖福, 李又芬. 竹类植物的居间分生组织与节间生长Ⅰ:秆茎的居间分生组织与节间生长[J]. 林业科学, 1980, 16(2):81-89.
XIONG W Y, DIN Z F, LI Y F. Intercalary meristem and internodal elongation of bamboo rhizome shoots[J]. Sciontia Silvae Sinicae, 1980, 6(2):81-89.
[2] MORGAN M, ANDERS S, LAWRENCE M, et al. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data[J]. Bioinformatics, 2009, 25(19): 2607-2608. DOI:10.1093/bioinformatics/btp450.
[3] GRABHERR MG, HAAS BJ, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7): 644-652. DOI:10.1038/nbt.1883.
[4] ZHENG Y, ZHAO L, GAO J, et al. iAssembler: a package for de novo assembly of Roche-454/Sanger transcriptome sequences[J]. BMC Bioinformatics, 2011, 12: 453. DOI:10.1186/1471-2105-12-453.
[5] CONESA A, GÖTZ S, GARCÍA-GÓMEZ JM, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 2005, 21(18): 3674-3676. DOI:10.1093/bioinformatics/bti610.
[6] ASHBURNER M, BALL CA, BLAKE JA, et al. Gene ontology: tool for the unification of biology[J]. Nat Genet, 2000, 25(1): 25-29. DOI:10.1038/75556.
[7] THIMM O, BLÄSING O, GIBON Y, et al. Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes[J]. The Plant Journal, 2004, 37(6): 914-939. DOI:10.1111/j.1365-313x.2004.02016.x.
[8] LOHSE M, NAGEL A, HERTER T, et al. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data[J]. Plant Cell Environ, 2014, 37(5): 1250-1258. DOI:10.1111/pce.12231.
[9] LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))Method[J]. Methods, 2001, 25(4): 402-408. DOI:10.1006/meth.2001.1262.
[10] ZHANG X M, ZHAO L, LARSON-RABIN Z, et al. De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae)[J]. PLoS ONE, 2012, 7(8): e42082. DOI:10.1371/journal.pone.0042082.
[11] LIU M, QIAO G, JIANG J, et al. Transcriptome sequencing and de novo analysis for Ma bamboo(Dendrocalamus latiflorus Munro)using the Illumina platform[J]. PLoS ONE, 2012, 7(10): e46766. DOI:10.1371/journal.pone.0046766.
[12] HE CY, CUI K, ZHANG JG, et al. Next-generation sequencing-based mRNA and microRNA expression profiling analysis revealed pathways involved in the rapid growth of developing culms in Moso bamboo[J]. BMC Plant Biol, 2013, 13: 119. DOI:10.1186/1471-2229-13-119.
[13] CUI K, WANG H, LIAO S, et al. Transcriptome sequencing and analysis for culm elongation of the world's largest bamboo(Dendrocalamus sinicus)[J]. PLoS ONE, 2016, 11(6): e0157362. DOI:10.1371/journal.pone.0157362.
[14] 王身昌, 胡尚连, 曹颖, 等. 梁山慈竹高通量转录组测序及差异表达基因分析[J]. 华北农学报, 2016, 31(3): 65-71. DOI:10.7668/hbnxb.2016.03.010.
WANG S C, HU S L, CAO Y, et al. High-throughput RNA-seq and analysis on differential expressed gene from Dendrocalamus farinosus[J].Acta Agriculturae Boreali-Sinica, 2016, 3:65-71.
[15] STASOLLA C, KATAHIRA R, THORPE TA, et al. Purine and pyrimidine nucleotide metabolism in higher plants[J]. J Plant Physiol, 2003, 160(11): 1271-1295. DOI:10.1078/0176-1617-01169.
[16] PENG Z, LU Y, LI L, et al. The draft genome of the fast-growing non-timber forest species moso bamboo(Phyllostachys heterocycla)[J]. Nat Genet, 2013, 45(4): 456-461. DOI:10.1038/ng.2569.
[17] 陈宇鹏, 曹颖, 胡尚连, 等. 基于高通量测序的慈竹笋转录组分析与基因功能注释[J]. 生物工程学报, 2016, 32(11): 1610-1623. DOI:10.13345/j.cjb.160095.
CHEN Y P, CAO Y, HU S L, et al. Transcriptome analysis and gene function annotation of bambusa emeiensis shoots based on high-throughput sequencing technology[J]. Chinese Journal of Biotechnology, 2016, 32(11): 1610-1623.
[18] OHASHI-ITO K, FUKUDA H. Transcriptional regulation of vascular cell fates[J]. Curr Opin Plant Biol, 2010, 13(6): 670-676. DOI:10.1016/j.pbi.2010.08.011.
[19] YANG JH, WANG H. Molecular mechanisms for vascular development and secondary cell wall formation[J]. Front Plant Sci, 2016, 7: 356. DOI:10.3389/fpls.2016.00356.
基金
基金项目:国家林业公益性行业科研专项项目(201504106); 国家自然科学基金项目(31301808,31670602); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:魏强(weiqiang@njfu.edu.cn),副教授,博士。