【目的】研究在两种不同芯层材料的复合体系下,增强材料含量与皮层厚度对共挤出(皮-芯结构)木塑复合材料弯曲与热膨胀性能的影响。【方法】以共挤出技术为加工工艺,选取短玻璃纤维(SGF)为皮层的增强材料,制备共挤出型(皮-芯结构)木塑复合材料(WPC)。分析了在芯层1与芯层2两种复合体系下,不同皮层厚度(1.0、1.2及1.6 mm )和皮层填料含量(0%、10%、20%、30%和40%)对共挤出型皮-芯结构WPC的弯曲性能和热膨胀性能的影响。【结果】当表面为纯的高密度聚乙烯(HDPE)时,在芯层1和芯层2两个复合体系中,皮层越厚则复合材料的热膨胀系数(LTEC)越高,其热膨胀性能越差; 当SGF的加入量恒定时,其LTEC随着皮层厚度的增加而降低。当皮层的弯曲模量比芯层低时,共挤出木塑复合材料的弯曲模量随着皮层厚度的升高逐渐降低; 当芯层的弯曲模量比皮层低时,共挤出木塑复合材料的弯曲模量随皮层厚度的升高而升高。皮层为SGF/HDPE材料时,在芯层1和芯层2两个复合体系中,随着皮层SGF的含量从0%增加到40%时,其弯曲性能显著性提高,LTEC显著降低。当皮层的 LTEC 值比芯层大时,皮层厚度的降低可以降低共挤出木塑复合材料的LTEC; 当皮层的 LTEC 值小于芯层时,共挤出木塑复合材料的 LTEC 随皮层厚度的增加而减少。【结论】通过改性芯层可以提高皮-芯结构木塑复合材料的整体性能,其增强趋势与表层的增强趋势相似。
Abstract
【Objectives】In order to investigate the effects of various GF contents in the shell layer and shell thickness changes on thermal expansion and flexural properties of coextruded WPCs. 【Methods】Co-extruded WPCs with short glass-fiber(SGF)loaded shells were manufactured, the formulations for the two-core systems and three shell thicknesses(i.e., 1.0, 1.2 and 1.6 mm)were used to make different shells. Their flexural and thermal expansion behavior was studied. It was shown that the LTEC values varied with composite structure and composition(i.e., core,shell thicknesses and materials). 【Results】The use of SGF-filled shells helped lower overall composite LTEC values. The imbalance LTEC between core and shell layer, and their modulus caused complex stress fields within a given composite system. Extruding a relatively thick, less-stiff HDPE shell with a large LTEC value over a stiff and thermally. Stable WPC core decreased overall composite modulus and increased the LTEC values. The composite modulus and strength increased and LTEC values decreased with increase of the SGF loading levels in the shell. 【Conclusions】The flexural modulus/strength of core-shell structure WPC was greatly enhanced with unfilled-and filled HDPE shells.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WILLIAM L J. Research needs in wood physics: a broad overview[J]. Wood and Fiber Science, 1998,20(2):277-294.
[2] 王清文,易欣,沈静.木塑复合材料在家具制造领域的发展机遇[J].林业工程学报,2016,1(3):1-8. DOI:10.13360/j.issn.2096-1359.2016.03.001.
WANG Q W,YI X,SHEN J.Tailoring wood-plastic composites for furniture production: possibilities and opportunities[J]. Journal of Forestry Engineering,2016,1(3):1-8.
[3] 方露,王雪龙,熊先青,等. 单板表面预处理对木塑复合胶合板耐湿循环能力的影响[J]. 林业工程学报, 2006, 1(1): 37-41. DOI: 10.13360/j.issn.2096-1359.2016.01.007.
FANG L, WANG X H, XIONG X Q, et al. Effects of surface pretreatments on wet cycle resistance of wood-plastic plywood[J]. Journal of Forestry Engineering, 2016, 1(1): 37-41.
[4] 邸明伟,王清文.木塑复合材料的表面处理与胶接[M].北京:科学出版社,2016.
[5] 黄润州,冒海燕,梅长彤,等.天然纤维/聚合物复合材料的研究进展[J].南京林业大学学报(自然科学版),2016,40(3):163-169. DOI:10.3969/j.issn.1000-2006.2016.03.027.
HUANG R Z,MAO H Y,MEI C T,et al.Research status and prospect of nature fiber reinforced polymer composites[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2016,40(3): 163-169.
[6] KIM B J, YAO F, HAN G, et al. Mechanical and physical properties of core-shell structured wood plastic composites: effect of shells with hybrid mineral and wood fillers [J]. Composite Part B. 2012,45: 1040-1048. DOI.org/10.1016/j.compositesb.2012.07.031.
[7] HUANG R Z. MEI C T, XU X W, et al.Effect of hybrid talc-basalt fillers in the shell layer on thermal and mechanical performance of co-extruded wood plastic composites[J]. Materials, 2015, 8: 8510-8523. DOI:10.3390/ma8125473.
[8] AYRILMIS N, DUNDAR R, KAYMAKCI A, et al. Mechanical and thermal properties of wood-plastic composites reinforced with hexagonal boron nitride[J]. Polymer Composites, 2014, 35(1):194-200. DOI: 10.1002/pc.22650.
[9] KLYOSOV A A. Wood-plastic composites[M]. Hoboken, New Jersey: John Wiley & Sons Inc, 2007: 698.
[10] YAO F, WU Q L, LEI Y, et al. Rice straw fiber-reinforced high-density polyethylene composite: effect of fiber type and loading [J]. Industrial Crops and Products, 2008, 28(1): 63-72.DOI:org/10.1016/j.indcrop.2008.01.007.
[11] JONES R M. Mechanics of composite materials[R]. McGraw-Hill, New York, USA: 1975.
[12] MIN Y, HUANG R Z, HE C X, et al. Hybrid composites from wheat straw, inorganic filler, and recycled polypropylene: morphology and mechanical and thermal expansion performance [J]. International Journal of Polymer Science, 2016,9(1):1-12. dx.DOI:org/10.1155/2016/2520670.
[13] AYRILMISS N, BENTHIEN J T, THOEMEN H. Effects of formulation variables on surface properties of wood plastic composites[J]. Composites Part B:, 2012,. 43(2): 325-331. DOI:org/10.1016/j.compositesb.2011.07.011.
[14] BRESSAN F, F DE BONA, SOMA A. Design of composite laminates with low thermal expansion[J]. J Materials: Design and Applications, 2004, 218:201-209.
[15] HALPIN J C. PAGANO N J. The Laminate Approximation for randomly oriented fibrous composites[J]. J Comp Mat, 1969, 3: 720.
[16] YU Z Q, ZHOU A X. An integrated thermomechanical method for modeling fiber reinforced polymer composite structures in fire[R]. ASCE Analysis and Computation Specialty Conference, 2010. DOI: 10.1061/41131(370)43.
[17] JIN S, MATUANA L M. Wood/plastic composites co-extruded with multi-walled carbon nanotube-filled rigid poly(vinyl chloride)cap layer[J]. Polym Inter, 2010, 59:648-657. DOI: 10.1002/pi.2745.
[18] HUANG R Z, XU X W, LEE S W, et al. High density polyethylene composites reinforced with hybrid Inorganic fillers: morphology, mechanical and thermal expansion performance[J]. Materials,2013,6(9):4122-4138.DOI:10.3390/ma6094122.
[19] STARK N M, MATUANA L M. Coating WPC's using co-extrusion to improve durability[R/OL]. Coating wood and wood composites:designing for durability, 2007. https://www.researchgate.net/publication/241753965_couting_WPCs_using_COExtrusion_to_Improve_Durability.
[20] JARUSOMBUTI S, AYRILMIS N. Surface characteristics and overlaying properties of flat-pressed wood plastic composites[J]. European Journal of Wood and Wood Products, 2011,69(3):375-382. DOI: 10.1007/s00107-010-0440-z.
[21] HUANG R Z, ZHOU C J, ZHANG Y, et al. Co-extrusion technology for functioned nature fiber reinforced polymer composites[J]. Advanced Materials Research, 2013,773: 497-501.DOI: 10.4028/www.scientific.net/AMR.773.497.
[22] HUANG R Z, XIONG W, XU X W, et al. Thermal expansion behavior of co-extruded wood plastic composites with glass-fiber reinforced shells[J]. Bioresources, 2012, 7(4):5514-5526.
[23] MOHANTY S, NAYAK S K. Interfacial, dynamic mechanical, and thermal fiber reinforced behavior of MAPE treated sisal fiber reinforced HDPE composites[J]. J Appl Polym Sci,2006,102:3306-3315. DOI: 10.1002/app.24799.
基金
基金项目:中国博士后基金特别资助项目(2017T100313); 中国博士后基金面上项目(2016M601821); 江苏省博士后基金A类项目(1601027A); 国家自然科学基金项目(31500483,31400502); 国家留学基金博士后项目(201508320022); 江苏高校优势学科建设工程资助项目(PAPD)
第一作者:黄润州(rhuang@njfu.edu.cn),副教授, 博士。