南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (06): 79-86.doi: 10.3969/j.issn.1000-2006.201612051
周 华,孟盛旺,刘琪璟
出版日期:
2017-12-18
发布日期:
2017-12-18
基金资助:
ZHOU Hua, MENG Shengwang, LIU Qijing*
Online:
2017-12-18
Published:
2017-12-18
摘要: 【目的】准确估测亚热带常绿阔叶林木本植物幼苗、幼树及灌木的地上生物量,为森林生态系统的经营管理提供理论参考。【方法】通过采样准确获得九连山39种木本植物746个单株样本的地径(d)、树高(h)和木材基本密度(ρ),以及各器官(叶、枝、干)的地上生物量观测值,并按生活型将样本分为乔木组、小乔木组和灌木组3类,分别以d2、ρd2、d2h和ρd2h为自变量拟合模型,根据拟合模型的R2值和估计值的标准误(SEE)选择最优生物量模型。【结果】九连山常见木本植物的木材基本密度在0.459~0.784 g/cm3之间; 推导的64个生物量模型都具有较高的R2值和较低的SEE值,据此选择出16个最优生物量模型。其中,小乔木组和灌木组的叶片和枝条生物量在只含自变量d时具有较高的R2值,而乔木组和小乔木组树干以及总的地上生物量在含自变量d、h和ρ时具有较高的R2值和SEE值。【结论】研究拟合的模型可准确估算该地区及相似地区常见木本植物幼苗、幼树及灌木的地上生物量。
中图分类号:
周华,孟盛旺,刘琪璟. 亚热带常绿阔叶林幼树与灌木的地上生物量模型[J]. 南京林业大学学报(自然科学版), 2017, 41(06): 79-86.
ZHOU Hua, MENG Shengwang, LIU Qijing. Allometric equations for estimating aboveground biomass of broad-leaved forests saplings and shrubs in subtropical China[J].Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(06): 79-86.DOI: 10.3969/j.issn.1000-2006.201612051.
[1] RITTER T, SABOROWSKI J. Point transect sampling of deadwood: a comparison with well-established sampling techniques for the estimation of volume and carbon storage in managed forests[J]. European Journal of Forest Research, 2012, 131(6): 1845-1856. DOI: 10.1007/s10342-012-0637-2.
[2] SPECHT A, WEST P W. Estimation of biomass and sequestered carbon on farm forest plantations in northern New South Wales, Australia[J]. Biomass and Bioenergy, 2003, 25(4): 363-379. DOI: 10.1016/s0961-9534(03)00050-3. [3] COLE T G, EWEL J J. Allometric equations for four valuable tropical tree species[J]. Forest Ecology and Management, 2006, 229(1): 351-360. DOI:10.1016/j.foreco.2006.04.017. [4] CHAVE J, ANDALO C, BROWN S, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests[J]. Oecologia, 2005, 145(1): 87-99. DOI: 10.1007/s00442-005-0100-x. [5] CHAVE J, RÉJOU-MÉCHAIN M, BU'RQUEZ A, et al. Improved allometric models to estimate the aboveground biomass of tropical trees[J]. Glob Chang Biol, 2014, 20(10): 3177-3190. DOI:10.1111/gcb.12629. [6] WEST G B, BROWN J H, ENQUIST B J. A general model for the origin of allometric scaling laws in biology[J]. Science, 1997, 276(5309): 122-126. DOI:10.1126/science.276.5309.122. [7] 何列艳, 亢新刚, 范小莉, 等. 长白山区林下主要灌木生物量估算与分析[J]. 南京林业大学学报(自然科学版), 2011, 35(5): 45-50. DOI:10.3969/j.issn.1000-2006.2011.05.010. HE L Y, KANG X G, FAN X L, et al. Estimation and analysis of understory shrub biomass in Changbai Mountains[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(5): 45-50. [8] 林伟, 李俊生, 郑博福, 等. 井冈山自然保护区12种常见灌木生物量的估测模型[J]. 武汉植物学研究, 2010, 28(6): 725-729. DOI:10.3724/SP.J.1142.2010.60725. LIN W, LI J S, ZHENG B F, et al. Models for estimating biomass of twelve shrub species in Jinggang Mountain Nature Reserve[J]. Journal of Wuhan Botanical Research, 2010, 28(6): 725-729. [9] 曾慧卿, 刘琪璟, 冯宗炜, 等. 红壤丘陵区林下灌木生物量估算模型的建立及其应用[J]. 应用生态学报, 2007, 18(10): 2185-2190. DOI:10.13287/j.1001-9332.2007.0359 ZENG H Q, LIU Q J, FENG Z W, et al. Estimation models of understory shrub biomass and their applications in red soil hilly region[J]. Chinese Journal of Applied Ecology, 2007, 18(10): 2185-2190. [10] 曾慧卿, 刘琪璟, 马泽清, 等. 基于冠幅及植株高度的檵木生物量回归模型[J]. 南京林业大学学报(自然科学版), 2006, 30(4): 101-104. DOI:10.3969/j.issn.1000-2006.2006.04.024. ZENG H Q, LIU Q J, MA Z Q, et al. The regression model of loropetalum Chinese biomass based on canopy diameter and plant height[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2006, 30(4): 101-104. [11] NELSON B W, MESQUITA R, PEREIRA J L G, et al. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon[J]. Forest Ecology and Management, 1999, 117(1): 149-167. DOI: 10.1016/s0378-1127(98)00475-7. [12] CHATURVEDI R K, RAGHUBANSHI A S. Aboveground biomass estimation of small diameter woody species of tropical dry forest[J]. New Forests, 2012, 44(4): 509-519. DOI: 10.1007/s11056-012-9359-z. [13] HENRY M, BESNARD A, ASANTE W A, et al. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa[J]. Forest Ecology and Management, 2010, 260(8): 1375-1388. DOI:10.1016/j.foreco.2010.07.040. [14] BROWN S L, SCHROEDER P E. Spatialpatterns of aboveground production and mortality of woody biomass for eastern US forest[J]. Ecological Applications, 1999, 9(3): 968. DOI: 10.2307/2641343. [15] OLIVEIRA A A, MORI S A. A central Amazonian terra firme forest. I. high tree species richness on poor soils[J]. Biodiversity and Conservation, 1999(8): 1219-1244. DOI: 10.1023/A: 1008908615271 [16] BROWN S, GILLESPIE A J R, LUGO A E. Biomass estimation methods for tropical forests with applications to forest inventory data[J].Forest Science, 1989, 35(4):881-902. https://www.researchgate.net/publication/233643575_Biomass_Estimation_Methods_for_Tropical_Forests_with_Applications_to_Forest_Inventory_Data. [17] SINGH V, TEWARI A, KUSHWAHA S P S, et al. Formulating allometric equations for estimating biomass and carbon stock in small diameter trees[J]. Forest Ecology and Management, 2011, 261(11): 1945-1949. DOI:10.1016/j.foreco.2011.02.019. [18] BRANDEIS T J, DELANEY M, PARRESOL B R, et al. Development of equations for predicting Puerto Rican subtropical dry forest biomass and volume[J]. Forest Ecology and Management, 2006, 233(1): 133-142. DOI:10.1016/j.foreco.2006.06.012. [19] 陈富强, 罗勇, 李清湖. 粤东地区森林灌木层优势植物生物量估算模型[J]. 中南林业科技大学学报, 2013, 33(2): 5-10. DOI:10.14067/j.cnki.1673-923x.2013.02.010. CHEN F Q, LUO Y, LI Q H. Allometric equations for estimating biomass of dominant shrub species in subtropical forests in eastern Guangdong province, China[J]. Journal of Central South University of Forestry & Technology, 2013, 33(2): 5-10. [20] CLARK D A, CLARK D B. Life history diversity of canopy and emergent trees in a neotropical rain forest[J]. Ecological Monographs, 1992, 62(3): 315-344. DOI: 10.2307/2937114. [21] ZHOU X, BRANDEL J R, SCHOENEBERGER M M, et al. Developing above-ground woody biomass equations for open-grown, multiple-stemmed tree species: shelterbelt-grown Russian-olive[J]. Ecological Modelling, 2007, 202(3): 311-323. [22] ARBAINSYAH, de IONGH H H, KUSTIAWAN W, et al. Structure, composition and diversity of plant communities in FSC-certified, selectively logged forests of different ages compared to primary rain forest[J]. Biodiversity and Conservation, 2014, 23(10):2445-2472. DOI: 10.1007/s10531-014-0732-4. [23] PARRESOL B R. Assessing tree and stand biomass: a review with examples and critical comparisons[J]. Forest Science, 1999, 45(4):573-593. [24] SUGIHARA G. Minimalcommunity structure: an explanation of species abundance patterns[J]. The American Naturalist, 1980, 116(6): 770-787. DOI: 10.1086/283669. [25] PÉREZ CORDERO L D, KANNINEN M. Wood specific gravity and aboveground biomass of Bombacopsis quinata plantations in Costa Rica[J]. Forest Ecology and Management, 2002, 165(1): 1-9. DOI: 10.1016/s0378-1127(01)00627-2. [26] MULLER-LANDAU H C. Interspecific andinter-site variation in wood specific gravity of tropical trees[J]. Biotropica, 2004, 36(1): 20-32. DOI:10.1111/j.1744-7429.2004.tb00292.x. [27] NOGUEIRA E M, FEARNSIDE P M, NELSON B W, et al. Wood density in forests of Brazil's ‘arc of deforestation': implications for biomass and flux of carbon from land-use change in Amazonia[J]. Forest Ecology and Management, 2007, 248(3): 119-135. DOI:10.1016/j.foreco.2007.04.047. [28] MARTINEZ-YRIZAR A, SARUKHAN J, PEREZ-JIMENEZ A, et al. Above-ground phytomass of a tropical deciduous forest on the coast of Jalisco, México[J]. Journal of Tropical Ecology, 1992, 8(1): 87-96. DOI: 10.1017/s0266467400006131. [29] CHATURVEDI R K, RAGHUBANSHI A S. Assessment of carbon density and accumulation in mono-and multi-specific stands in teak and sal forests of a tropical dry region in India[J]. Forest Ecology and Management, 2015, 339: 11-21. DOI:10.1016/j.foreco.2014.12.002. [30] CHATURVEDI R K, RAGHUBANSHI A S, SINGH J S. Carbon density and accumulation in woody species of tropical dry forest in India[J]. Forest Ecology and Management, 2011, 262(8): 1576-1588. DOI:10.1016/j.foreco.2011.07.006. [31] CHATURVEDI R K, RAGHUBANSHI A S, SINGH J S. Plant functional traits with particular reference to tropical deciduous forests: a review[J]. Journal of Bioscience and Bioengineering, 2011, 36(5): 963-981. DOI: 10.1007/s12038-011-9159-1. [32] SHINOZAKI K, YODA K, HOZUMI K, et al. A quantitative analysis of plant form:the pipe model theory. II. further evidence of the theory and its application in forest ecology[J]. Japanese Journal of Ecology, 1964(14): 133-139. DOI: 10.18960/seitai.14.4_133. [33] 李根, 周光益, 王旭, 等. 南岭小坑藜蒴栲群落地上部分生物量分配规律[J]. 生态学报, 2011, 31(13): 3650-3658. LI G, ZHOU G Y, WANG X, et al. Aboveground biomass of natural Castanopsis fissa community at the Xiaokeng of Nanling Mountain, southern China[J]. Acta Ecologica Sinica, 2011, 31(13): 3650-3658. [34] CHAVE J, CONDIT R, AGUILAR S, et al. Error propagation and scaling for tropical forest biomass estimates[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004(359): 409-420. DOI:10.1098/rstb.2003.1425. [35] BASKERVILLE G L. Use of logarithmic regression in the estimation of plant biomass[J]. Canadian Journal of Forest Research, 1972(2): 49-53. |
[1] | 杨永. 裸子植物的系统分类:历史、现状和展望[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 14-26. |
[2] | 张瑞, 周正虎, 王传宽, 金鹰. 东北温带森林不同材性树种木质部解剖和水力性状[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 229-236. |
[3] | 黄永健, 荀航, 张保, 尤俊昊, 姚曦, 汤锋. HPLC同时测定竹笋中8种酚酸类物质含量的方法研究及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 237-244. |
[4] | 邓云飞. 安息香科的系统学研究进展[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 27-35. |
[5] | 李家亮, 巫大宇, 毛康珊. 柏木属的分类地位和物种多样性研究现状与建议[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 36-45. |
[6] | 李涌福, 杨庆华, 陈林, 张敏, 向其柏, 王贤荣, 段一凡. 木犀属内分组关系的分类修订[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 58-62. |
[7] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[8] | 丁咏, 刘鑫, 张金池, 王宇浩, 陈美玲, 李涛, 刘孝武, 周悦湘, 孙连浩, 廖艺. 酸雨类型转变对杉木林地土壤和细根生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 90-98. |
[9] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[10] | 卜晓婷, 付威, 李淑娴, 徐志标, 彭大庆, 徐林桥. 幼化和外源激素对娜塔栎嫩枝扦插生根的影响及其生根解剖学观察[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 129-136. |
[11] | 杜晋城, 李欣欣, 王泽亮, 刘偲, 钟毅, 王丽华. 聚乙二醇胁迫下3个油橄榄品种生理指标响应[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 137-143. |
[12] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[13] | 张馨方, 王广鹏, 张树航, 李颖, 郭燕. 不同抗螨性板栗差异次生代谢物筛选与分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 234-240. |
[14] | 杨宏, 伊贤贵, 王贤荣, 吴桐, 周华近, 陈洁, 李蒙, 朱兆青. 樱花新品种‘元春’[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 275-276. |
[15] | 田梦阳, 朱树林, 窦全琴, 季艳红. 薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 86-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||