增施铁对镉胁迫下柳树生长及光合生理性能的改善

戴前莉,李金花,胡建军,卢孟柱,GIUSEPPENervo

南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (02) : 63-72.

PDF(1823711 KB)
PDF(1823711 KB)
南京林业大学学报(自然科学版) ›› 2017, Vol. 41 ›› Issue (02) : 63-72. DOI: 10.3969/j.issn.1000-2006.2017.02.010
研究论文

增施铁对镉胁迫下柳树生长及光合生理性能的改善

  • 戴前莉1,李金花1*,胡建军1,卢孟柱1,GIUSEPPE Nervo2
作者信息 +

Improvement on growth and photosynthetic physiological performance of three willow clones or cultivar under Cd treatments and supplying Fe

  • DAI Qianli1, LI Jinhua1*, HU Jianjun1, LU Mengzhu1, GIUSEPPE Nervo2
Author information +
文章历史 +

摘要

【目的】了解Cd胁迫及增施Fe对不同柳树生长及光合生理的影响,探讨增施Fe对降低柳树Cd毒害和提高Cd耐性以及对柳树Cd修复的Fe调控作用。【方法】以旱柳‘Levante’和蒿柳无性系79026及790260为材料,利用1/2 Hoagland营养液(含25 μmol/L EDTA-Na2Fe)培养法,以不同Cd浓度(0、10、50、100 μmol/L)(不增施Fe)和上述Cd浓度下增施Fe(25 μmol/L)两组处理,培养42 d后测定不同柳树生长量(苗高和地径)、干物质量(根、茎、叶)、光合作用指标(叶绿素a、b含量、叶绿素a/b、净光合速率、气孔导度和胞间CO2浓度)和Cd、Fe含量(根、茎、叶)。【结果】①随着Cd浓度增大,3个无性系/品种生长量、干物质量、叶绿素a、b含量、净光合速率、气孔导度和Fe含量(茎、叶)减少,叶绿素a/b、胞间CO2浓度、Cd含量(根、茎、叶)增大,但根Fe含量在低中浓度Cd(10、50 μmol/L)时逐渐增大,在高浓度Cd(100 μmol/L)时减少。在相同Cd浓度胁迫下,3个无性系/品种Cd和Fe含量大小为根﹥叶﹥茎,旱柳根Cd含量大于蒿柳,但叶Cd含量小于蒿柳。②与低浓度Cd时增施Fe相比,在中高浓度Cd时增施Fe后,3个无性系/品种叶绿素a、b含量、旱柳‘Levante’和蒿柳79026生长量和干物质量(旱柳‘Levante’茎除外)、旱柳‘Levante’叶绿素a/b和叶片净光合速率均显著减小,而3个无性系/品种Cd含量增大,Fe含量减少。在高浓度Cd时增施Fe后旱柳‘Levante’和蒿柳790260叶Cd含量均小于中浓度Cd时增施Fe的,且旱柳Cd含量(根、茎、叶)和Fe含量(叶)均小于蒿柳。③增施Fe提高了Cd胁迫下柳树生长和干物质量、叶绿素a、b含量、气孔导度及胞间CO2浓度,特别是在高浓度Cd时增施Fe后降低了3个无性系/品种根和叶Cd含量,增加了茎Cd含量,旱柳Cd含量(根、茎和叶)均小于蒿柳。【结论】Cd胁迫抑制了柳树生长和干物质积累以及叶绿素合成、光合作用,在中、高浓度Cd胁迫时,对旱柳生长和干物质量积累的抑制作用大于蒿柳; 柳树根的Cd和Fe积累能力大于茎和叶,蒿柳Cd积累能力大于旱柳。增施Fe提高了Cd胁迫下柳树生长量和干物质量以及叶绿素含量,不同程度地增加了Cd含量和Fe含量,一定程度上缓解了Cd胁迫对柳树光合作用的影响,且对旱柳的影响作用大于蒿柳,这证实了Cd胁迫下增施Fe改善Cd胁迫下柳树对生长和生理的适应性。

Abstract

【Objective】 This paper investigated the effect of Cd concentrations with/without extra Fe on growth and photosynthetic physiology of different willow clones/cultivar is to explore the role of extra Fe on reducing Cd stress and improving Cd tolerance of willow and to shed more light on the regulation of extra Fe under Cd stress as its results for important practical significance. 【Method】 In greenhouse, cuttings of three willow clones/cultivar, Salix matsudana ‘Levante’, S. viminalis cl. 79026 and S. viminalis cl. 790260, were used for hydroponic culture in half of Hoagland nutrient solution(25 μmol/L EDTA-Na2Fe)with Cd concentrations(0, 10, 50, 100 μmol/L). In another hydroponic group, extra Fe(25μmol/L EDTA-Na2Fe)were supplied in solution with different Cd concentrations mentioned above. Growth(height and diameter), biomass(root, stem and leaf), photosynthesis indicators(chlorophyll a and b content, ration of chlorophyll a to b, net photosynthesis, stomatal conductance and intercellular CO2 concentration), Cd and Fe content of root, stem, leaf were measured for plants of each clone/cultivar after 42 d culture. 【Result】 ① With the increasing of Cd concentrations in solution, growth, biomass, chlorophyll a and b content, net photosynthetic rate, stomatal conductance and Fe content of stem and leaf decreased, however, ratio of chlorophyll a to b, intercellular CO2 concentration, Cd content of root, stem, leaf increased. Meanwhile, Fe content of root in three clones/cultivar decreased under low and middle Cd concentration(10, 50 μmol/L)and decreased under high Cd concentration(100 μmol/L). Under the same Cd concentration, Cd and Fe content of three clones/cultivar were root> leaf> stem. Cd content of root in S. matsudana was more than that of S. viminalis, while Cd content of leaf in S. viminalis were more than that of S. matsudana. ② In comparison with that under the low Cd concentration with extra Fe, chlorophyll a and b content of three clones/cultivar, growth and biomass of S. matsudana‘Levante‘ and S. viminalis cl. 79026 except that stem biomass of S. matsudana ‘Levante’, ratio of chlorophyll a to b, net photosynthetic rate of S. matsudana ‘Levante’ were significantly decreased, while Cd and Fe content of three clones/cultivar were increased and decreased under the middle and high Cd concentration with extra Fe. Under the high Cd concentrations with extra Fe, Cd content of leaf in S. matsudana ‘Levante’ and S. viminalis cl. 790260 were less than that under low and middle Cd concentration with extra Fe. And Cd content of root, stem, leaf and Fe content of leaf in S. matsudana were less than these of S. viminalis. ③ Compared with that in the culture without extra Fe, extra Fe in the culture improved growth, biomass, chlorophyll a and b content, stomatal conductance and intercellular CO2 concentration of willow under Cd stress, especially decreased Cd content of root and leaf and increased Cd content of stem under the high Cd concentrations with extra Fe. In addition, Cd content of root, stem and leaf in S. matsudana’ were less than these in S. viminalis. 【Conclusion】Cd stress inhibited growth, dry biomass accumulation, chlorophyll synthesis and photosynthesis of willow. At middle and high Cd concentrations, inhibition on growth and dry biomass accumulation of S. matsudana was greater than that of S. viminalis. Cd and Fe accumulation capacity of root was greater than that of stem and leaf in willow, while Cd accumulation capacity of S. viminalis was greater than that of S. matsudana. Extra Fe with Cd stress increased growth, biomass, chlorophyll content, Cd and Fe content of willow. As the result, extra Fe alleviated Cd stress on chlorophyll synthesis, photosynthesis, etc. of willow while effect on S. matsudana was greater than that on S. viminalis. The results showed that extra Fe supplying could improve growth and physiological adaptation of willows under Cd stress.

引用本文

导出引用
戴前莉,李金花,胡建军,卢孟柱,GIUSEPPENervo. 增施铁对镉胁迫下柳树生长及光合生理性能的改善[J]. 南京林业大学学报(自然科学版). 2017, 41(02): 63-72 https://doi.org/10.3969/j.issn.1000-2006.2017.02.010
DAI Qianli, LI Jinhua, HU Jianjun, LU Mengzhu, GIUSEPPE Nervo. Improvement on growth and photosynthetic physiological performance of three willow clones or cultivar under Cd treatments and supplying Fe[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2017, 41(02): 63-72 https://doi.org/10.3969/j.issn.1000-2006.2017.02.010
中图分类号: S718.43   

参考文献

[1] BENAVIDES M P, GALLEGO S M, TOMARO M L. Cadmium toxicity in plants[J]. Brazilian Journal of Plant Physiology, 2005, 17(1): 21-34. DOI: 10.1590/S1677-04202005000100003.
[2] GREGER M, LANDBERG T. Use of willow in phytoextraction[J]. International Journal of Phytoremediation, 1999, 1(2): 115-123. DOI: 10.1080/15226519908500010.
[3] DICKINSON N M, PULFORD I D. Cadmium phytoextraetion using short rotation coppice Salix: the evidence trail[J]. Environment international, 2005, 31(4): 609-613. DOI: 10.1016/j.envint.2004.10.013.
[4] BERNDES G, FREDRIKSON F, BORJESSON P. Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden[J]. Agriculture, Ecosystems & Environment, 2004, 103(1): 207-223. DOI: 10.1016/j.agee.2003.09.013.
[5] MEERS E, VANDECASTEELE B, RUTTENS A, et al. Potential of five willow species(Salix spp.)for phytoextraction of heavy metals[J]. Environmental and Experimental Botany, 2007, 60(1): 57-68. DOI: 10.1016/j.envexpbot.2006.06.008.
[6] DOS SANTOS UTMAZIAN M N, WIESHAMMER G, VEGA R, et al. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars[J]. Environmental Pollution, 2007, 148(1): 155-165. DOI: 10.1016/j.envpol.2006.10.045.
[7] KLANG-WESTIN E, ERIKSSON J. Potential of Salix as phytoextractor for Cd on moderately contaminated soils[J]. Plant and Soil, 2003, 249(1): 127-137. DOI: 10.1023/A:1022585404481.
[8] JACCONETTE M, ISEBRANDS J G, THEO V, et al. Development of short-rotation willow coppice systems for environmental purposes in Sweden[J]. Biomass & Bioenergy, 2005, 28(2): 219-228. DOI: 10.1016/j.biombioe.2004.08.012.
[9] VASSILEV A, PEREZ-SANZ A, SEMANE B, et al. Cadmium accumulation and tolerance of two Salix genotypes hydroponically grown in presence of cadmium[J]. Journal of Plant Nutrition, 2005, 28(12): 2159-2177. DOI: 10.1080/01904160500320806.
[10] WATSON C, PULFORD I D, RIDDELL-BLACK D. Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials[J]. International Journal of Phytoremediation, 2003, 5(4): 351-365. DOI: 10.1080/15226510309359042.
[11] LANDBERG T, GREGER M. Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas[J]. Applied Geochemistry, 1996, 11(s 1-2): 175-180. DOI:10.1016/0883-2927(95)00082-8.
[12] VYSLOUZILOVA M, TLUSTOS P, SZAKOVA J. Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils[J]. Plant Soil Environment, 2003, 49(12): 542-547.
[13] ZACCHINI M, PIETRINI F, SCARASCIA-MUGNOZZA G, et al. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics[J]. Water Air & Soil Pollution, 2009, 197(1-4): 23-34. DOI:10.1007/s11270-008-9788-7.
[14] IORI V, PIETRINI F, MASSACCI A, et al. Morphophysiological responses, heavy metal accumulation and phytoremoval ability in four willow clones exposed to cadmium under hydroponics[J]. Phytoremediation, 2014,(1): 87-98. DOI: 10.1007/978-3-319-10395-2_7.
[15] KUZOVKINA Y A, KNEE M, QUIGLEY M F. Cadmium and copper uptake and translocation in five willow(Salix L.)Species[J]. International Journal of Phytoremediation, 2004, 6(3): 268-287. DOI: 10.1080/16226510490496726.
[16] 杨卫东,陈益泰.不同杞柳品种对镉(Cd)吸收与忍耐的差异[J].林业科学研究,2008,21(6):857—861. DOI:10.3321/j.issn:1001-1498.2008.06.022. YANG W D, CHEN Y T. Differences in uptake and tolerance to Cadmium in varieties of Salix integra[J]. Forest Research, 2008, 21(6): 857-861.
[17] 杨卫东,陈益泰.垂柳对镉吸收、积累与耐性的特点分析[J].南京林业大学学报(自然科学版),2009,33(5):17-20. DOI:10.3969/j.jssn.1000-2006.2009.05.004. YANG W D, CHEN Y T. Studies on cadmium uptake, accumulation and tolerance in Salix babylonica[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 33(5): 17-20.
[18] 贾中民,王力,魏虹,等.垂柳和旱柳对镉的积累及生长光合响应比较分析水[J].林业科学,2013,49(11):51-59. DOI:10.11707/j.1001-7488.20131107. JIA Z M, WANG L, WEI H, et al. Comparative analysis of Salix lonica and Salix matsudana for their cadmium accumulation, growth and photosynthesis in response to cadmium contamination[J]. Scientia Silvae Sinicae, 2013, 49(11): 51-59.
[19] LOMBI E, ZHAO F J, DUNHAM S J, et al. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense[J]. New Phytologist, 2000, 145(1): 11-20. DOI: 10.1046/j.1469-8137.2000.00560.x
[20] FELIX H. Field trials for in situ decontamination of heavy metals polluted soils using crops of metal-accumulating plants[J]. Zeitschrift für Pflanzenernährung und Bodenkunde, 1997, 160(4): 525-529. DOI: 10.1002/jpln.19971600414.
[21] MARMIROLI M, PIETRINI F, MAESTRI E, et al. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics[J]. Tree Physiology, 2011, 31(12): 1319-34. DOI: 10.1093/treephys/tpr090.
[22] PIETRINI F, ZACCHINI M, IORI V, et al. Screening of poplar clones for cadmium phytoremediation using photosynthesis, biomass and cadmium content analyses[J]. International Journal of Phytoremediation, 2010, 12: 105-120. DOI: 10.1080/15226510902767163.
[23] MIHUCZ V G, CSOG Á, FODOR F, et al. Impact of two iron(III)chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics[J]. Journal of Plant Physiology, 2012, 169(6): 561-566. DOI: 10.1016/j.jplph.2011.12.012.
[24] SOLTI Á, GÁSPÁR L, MÉSZÁROS I, et al. Impact of iron supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar(Populus glauca)[J]. Annals of Botany, 2008, 102(5): 771-782. DOI: 10.1093/aob/mcn160.
[25] FODOR F, GÁSPÁR L, MORALES F, et al. Effects of two iron sources on iron and cadmium allocation in poplar(Populus alba)plants exposed to cadmium[J]. Tree Physiology, 2005, 25(9): 1173-1180. DOI: 10.1093/treephys/25.9.1173.
[26] 张帆,万雪琴,王长亮,等.镉胁迫下增施氮对杨树生长和光合特性的影响[J].四川农业大学学报,2011,29(3):317-321. DOI: 10.3969/j.issn.1000-2650.2011.03.005. ZHANG F, WAN X Q, WANG C L, et al. Effects of nitrogen supplement on photosynthetic characteristic and growth rate of poplar plants under cadmium stress[J]. Journal of Sichuan Agricultural University, 2011, 29(3): 317-321.
[27] SHAO G S, CHEN M X, WANG W X, et al. Iron nutrition affects cadmium accumulation and toxicity in rice plants[J]. Plant Growth Regulation, 2007, 53(1): 33-42. DOI:10.1007/s10725-007-9201-3.
[28] SOLTI Á. Cd-Fe interference in iron homeostasis and in photosynthesis [D]. Budapest: Eötvös University, 2012.
[29] SOLTI Á, SÁRVÁRI É, TÓTHB B, et al. Cd affects the translocation of some metals either Fe-like or Ca-like way in poplar[J]. Plant Physiology and Biochemistry, 2011, 49(5): 494-498. DOI: 10.1016/j.plaphy.2011.01.011
[30] SÁRVÁRI É, SOLTI Á, BASA B, et al. Impact of moderate Fe excess under Cd stress on the photosynthetic performance of poplar(Populus jacquemontiana var. glauca cv. Kopeczkii)[J]. Plant Physiology and Biochemistry, 2011, 49(5): 499-505. DOI: 10.1016/j.plaphy.2011.02.012.
[31] SIEDLECKA A, KRUPA Z. Interaction between cadmium and iron and its effects on photosynthetic capacity of primary leaves of Phaseolus vulgaris[J]. Plant Physiology and Biochemistry, 1996, 34(6): 833-841.
[32] BASZYNSKI T. Interference of Cd2+ in functioning of the photosynthetic apparatus of higher plants[J]. Acta Societatis Botanicorum Poloniae, 1986, 55: 291-301. DOI: 10.5586/asbp.1986.029.
[33] 邵国胜,陈铭学,王丹英,等.稻米镉积累的铁肥调控[J].中国科学:C辑生命科学,2008,38(2):180-187. SHAO G S, CHEN M X, WANG D Y, et al. Iron nutrition affects cadmium accumulation and toxicity in rice plants[J]. Science in China: Series C Life Sciences, 2008, 38(2): 180-182.
[34] 张宪政.作物生理研究法[M].北京:农业出版社.1992.
[35] 万雪琴,张帆,夏新莉,等.镉胁迫对杨树矿质营养吸收和分配的影响[J].林业科学,2009,45(7):45-51. DOI: 10.11707/j.1001-7488.20090708 WAN X Q, ZHANG F, XIA X L, et al. Efects of cadmium stress on absorption and distribution of mineral nutrients in poplar plants[J]. Scientia Silvae Sinicae, 2009, 45(7): 45-51.
[36] 汪有良,王保松,施士争.乔木型柳树杂种无性系对镉的吸收和积累特性[J].南京林业大学学报(自然科学版),2011,35(2):135-138. DOI: 10.3969/j.jssn.1000-2006.2011.02.029. WANG Y L, WANG B S, SHI S Z. Research on cadmium absorption characters of arbor willows[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(2):135-138.
[37] 汪有良,王保松,施士争.灌木型柳树镉吸收积累性状的研究[J].西北林学院学报,2011,26(2):105-10. WANG Y L, WANG B S, SHI S Z. Cadmium absorption characters of bush willow[J]. Journal of Northwest Forestry University, 2011, 26(2):105-110.
[38] 黄益宗,朱永官,黄凤堂,等.镉和铁及其交互作用对植物生长的影响[J].生态环境,2004,13(3):406-409.DOI:10.3969/j.issn.1674-5906.2004.03.030. HUANG Y Z, ZHU Y G, HUANG F T, et al. Effects of cadmium and iron and their interactions on plants growth: a review[J]. Ecology and Environment, 2004, 13(3): 406-409.
[39] 郭春爱,刘芳,许晓明.叶绿素b缺失与植物的光合作用[J].植物生理学通讯,2006,42(5):967-973. GUO C A, LIU F, XU X M. Chlorophyll-b Deficient and Photosynthesis in Plants[J]. Plant Physiology Communications, 2006, 42(5): 967-973.
[40] 李德全,高辉远,孟庆伟.植物生理学[M].北京:中国农业科学技术出版社,2004.
[41] FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33(1): 317-345. DOI: 10.1146/annurev.pp.33.060182.001533.
[42] 蔺晓辉,段爱国,何彩云,等.镉胁迫对107杨幼苗光合作用和干物质分配的影响[J].林业科学研究,2012,25(5):651-656.DOI:10.3969/j.issn.1001-1498.2012.05.018. LIN X H, DUAN A G, HE C Y, et al. Effects of cadmium stress on leaf photosynthesis and dry matter allocation of Populus×euramericana(Dode)Guineir cv. ‘Neva’[J]. Forest Research, 2012, 25(5): 651-656.
[43] 黄益宗,朱永官,童依平,等.土壤水分变化对玉米苗期吸收积累镉的影响[J].生态学报,2004,24(12):499-505. DOI: 10.3321/j.issn:1000-0933.2004.12.024. HUANG Y Z, ZHU Y G, TONG Y P, et al. Absorption and accumulation of Cd in corn: effects by soil water contents[J]. Acta Ecologica Sinica, 2004, 24(12): 499-505.
[44] 张军,束文圣.植物对重金属镉的耐受机制[J].植物生理与分子生物学学报,2006,32(1):1-8. DOI: 10.3321/j.issn:1671-3877.2006.01.001. ZHANG J, SHU W S. Mechanisms of heavy metal cadmium tolerance in plants[J]. Journal of Plant Physiology and Molecular Biology, 2006,32(1): 1-8.
[45] 杨卫东.柳树对镉积累、忍耐与解毒生理机制初步研究[D].北京:中国林业科学研究院,2008. YANG W D. Preliminary studies on cadmium accumulation, tolerance and detoxification in willows[D]. Beijing: Chinese Academy of Forestry, 2008.
[46] 韦秀文,姚斌,刘慧文,等.重金属及有机物污染土壤的树木修复研究进展[J].林业科学,2011,47(5):124-130. DOI: 10.11707/j.1001-7488.20110520. WEI X W, YAO B, LIU H W, et al. Application of dendroremediation to the soil contaminated soil by heavy metals and organic pollutants[J]. Scientia Silvae Sinicae, 2011, 47(5): 124-130.

基金

收稿日期:2016-02-16 修回日期:2016-12-01
基金项目:林业科技成果国家级推广项目([2015]43号)
第一作者:戴前莉(daiqianli126@126.com)。*通信作者:李金花(lijinh@caf.ac.cn),副研究员,博士。
引文格式:戴前莉,李金花,胡建军,等. 增施铁对镉胁迫下柳树生长及光合生理性能的改善 Symbol`@@ [J]. 南京林业大学学报(自然科学版),2017,41(2):63-72.

PDF(1823711 KB)

Accesses

Citation

Detail

段落导航
相关文章

/