[1] 徐华东, 王立海.温度和含水率对红松木材中应力波传播速度的影响[J]. 林业科学, 2011, 47(9): 123-128. XU H D, WANG L H. Effects of moisture content and temperature on propagation velocity of stress waves in Korean pine wood [J]. Scientia Silvae Sinicae, 2011, 47(9): 123-128. [2] 高珊, 王立海, 王洋, 等.应力波在立木冻结与常温状态下的传播速度比较[J]. 林业科学, 2010, 46(10): 124-129. GAO S, WANG L H, WANG Y, et al. Comparisons of stress wave propagating velocities in frozen state and in normal temperature state of standing trees[J]. Scientia Silvae Sinicae, 2010, 46(10):124-129. [3] GAO S, WANG X P, WANG L H, et al. Effect of temperature on acoustic evaluation of standing trees and logs:Part 1. laboratory investigation[J]. Wood Fiber Sci, 2012, 44: 286-297. [4] GAO S, WANG X P, WANG L H, et al. Effect of temperature on acoustic evaluation of standing trees and logs: Part 2. field investigation[J]. Wood Fiber Sci, 2013, 45: 15-25. [5] XU H D, WANG L H. Analysis of cold temperature effect on stress wave velocity in green wood[J]. Holzforschung, 2014, 68(6): 693-698. [6] 江京辉, 赵丽媛, 吕建雄.低温对木材性质影响研究进展[J].世界林业研究, 2014, 27(2): 35-38. DOI:10.13348/j.cnki.sjlyyj.2014.02.007 JIANG J H, ZHAO L Y, LV J X. Research progress on properties of wood at low temperature[J].World Forestry Research, 2014, 27(2): 35-38. [7] 徐华东,徐国祺,王立海.低温对红松和大青杨木材力学性质的影响[J].南京林业大学学报(自然科学版), 2014, 38(5): 25-28. DOI:10.3969/j.issn.1000-2006.2014.05.006. XU H D, XU G Q, WANG L H. Effect of low temperature on the mechanical properties of Pinus koraiensis and Populus ussuriensis timber[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(5): 25-28. [8] BURKE M J, GUSTO L V, QUAMME H A, et al. Freezing and injury in plants[J]. Ann Rev Plant Physiol, 1976, 27: 507-528. [9] ASHWORTH E N, ECHLIN P, PEARCE R S, et al. Ice formation and tissue response in apple twigs[J]. Plant Cell Environ, 1988, 11: 703-710. DOI:10.1111/j.1365-3040.1988.tb01153.x. [10] MALONE S R, ASHWORTH E N. Freezing stress response in woody tissues observed using low-temperature scanning electron microscopy and freeze substitution techniques[J]. Plant Physiol, 1991, 95:871-881. [11] RAISANEN M, REPO T, RIKALA R, et al. Does ice crystal formation in buds explain growth disturbances in boron-deficient Norway spruce?[J]. Trees-struct Funct, 2006,20(4): 441-448. [12] 杨戈尔, 张爱丽, 徐学敏, 等.胞内冰晶形成(综述)[J]. 工程热物理学报, 2007,28(S2): 55-57. DOI:10.3321/j.issn:0253-231X.2007.z2.015 YANG G E, ZHANG A L, XU X M, et al. Intracellular ice formation(review)[J]. Journal of Engineering Thermophysics, 2007, 28(S2): 55-57. [13] TOPP G C, DAVIS J L, ANNAN A P. Electromagnetic determination of soil water content: measurements in coaxial transmission lines[J]. Water Resour Res, 1980, 16:574-582. DOI:10.1029/wr016i003p00574. [14] WULLSCHLEGER S, HANSON P J, TODD D E. Measuring stem water content in four deciduous hardwoods with a time-domain reflectometer[J]. Tree Physiol, 1996, 16: 809-815.DOI:10.1093/treephys/16.10.809. [15] SPARKS J P, CAMPBELL G S, BLACK R A. Water content, hydraulic conductivity, and ice formation in winter stems of Pinus contorta: a TDR case study[J]. Oecologia, 2001, 127: 468-475. DOI:10.1007/s004420000587. [16] HIRSH A, BENT T, ERBE E. Localization and characterization of intracellular liquid-liquid phase separations in deeply frozen populus using electron microscopy, dynamic mechanical analysis and differential scanning calorimetry[J]. Thermochim Acta, 1989, 155:163-186. DOI:10.1016/0040-6031(89)87144-8. [17] ASHWORTH E N. Responses of bark and wood cells to freezing advances in low temperature[J]. Biology, 1996(3): 65-106. DOI:10.1016/s1873-9792(96)80004-5. [18] NAKAMURA K, HATAKEYAMA T, HATAKEYAMA H. Studies on bound water of cellulose by differential scanning calorimetry[J]. Text Res J, 1981, 51(9): 607-613. DOI:10.1177/004051758105100909. [19] 徐华东, 王立海. 冻结红松和大青杨湿木材内部水分存在状态及含量测定[J]. 林业科学, 2012, 48(2): 139-143. XU H D, WANG L H. Determining the states of water and its fraction in frozen Populus ussuriensis and Pinus koraiensis green timbers [J]. Scientia Silvae Sinicae, 2012, 48(2): 139-143. [20] HACKER J, NEUNER G. Ice propagation in plants visualized at the tissue level by infrared differential thermal analysis(IDTA)[J]. Tree Physiol, 2007, 27: 1661-1670. DOI:10.1093/treephys/27.12.1661. [21] PEARCE R S. Plant freezing and damage[J]. Ann Bot, 2001, 87: 417-424. DOI:10.1006/anbo.2000.1352. [22] ISHIKAWA M, PRICE W S, IDE H, et al. Visualization of freezing behaviors in leaf and flower buds of full-moon maple by nuclear magnetic resonance microscopy[J]. Plant Physiol, 1997, 115: 1515-1524. DOI:10.1104/pp.115.4.1515. [23] FRANKS F. Biophysics and biochemistry at low temperatures[M]. Cambridge: Cambridge University Press, 1985. [24] NEUNER G, XU B C, HACKER J. Velocity and pattern of ice propagation and deep supercooling in woody stems of Castanea sativa, Morus nigra and Quercus robur measured by IDTA [J]. Tree Physiol, 2010, 30: 1037-1045. DOI:10.1093/treephys/tpq059. [25]SAKAI A, LARCHER W. Frost survival of plants: responses and adaptation to freezing stress[J]. Ecological Studies, 1987, 62: 321. [26] PEARCE R S. Extracellular ice and cell shape in frost-stressed cereal leaves: a low temperature scanning-electron-microscopy study[J]. Planta, 1988, 175: 313-324. DOI:10.1007/bf00396336. [27] FUJIKAWA S, KURODA K. Cryo-scanning electron microscopic study on freezing behavior of xylem ray parenchyma cells in hardwood species[J]. Micron, 2000, 31: 669-686. DOI:10.1016/s0968-4328(99)00103-1. [28] KURODA K, KASUGA J, ARAKAWA K, et al. Xylem ray parenchyma cells in boreal hardwood species respond to subfreezing temperatures by deep supercooling that is accompanied by incomplete desiccation[J]. Plant Physiol, 2003, 131: 736-744. DOI:10.1104/pp.011601. [29] KASUGA J, ARAKAWA K, FUJIKAWA S. High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells[J]. New Phytologist, 2007,174(3): 569-579. DOI:10.1111/j.1469-8137.2007.02025.x. [30] WEISE U, MALONEY T, PAULAPURO H. Quantification of interaction of water in different states with wood pulp fibers[J]. Cellulose, 1996(3): 189-202. DOI:10.1007/bf02228801. [31] KÄRENLAMPI P P, TYNJÄÄ P, STRÖM P. Phase transformations of wood cell wall water[J]. J Wood Sci, 2005, 51: 118-123. DOI:10.1007/s10086-004-0630-6. [32] 赵丽媛, 江京辉,郭飞,等. 低温作用对马尾松热处理材力学性能的影响[J].木材加工机械, 2016, 27(1): 19-21. DOI:10.13594/j.cnki.mcjgjx.2016.01.006. ZHAO L Y, JIANG J H, GUO F, et al. Effect of cryogenic processing on mechanical properties of heat-treated masson pine[J]. Wood Processing Machinery, 2016, 27(1): 19-21. [33] CHUDINOV B S, STEPANOV V I. Phase mixture of water in frozen wood[J]. Holztechnologie, 1968, 9(1):14-18. [34] GREEN D W, EVANS J W, LOGAN J D, et al. Adjusting modulus of elasticity of lumber for changes in temperature[J]. Forest Prod J, 1999, 49(10): 82-94. [35] 乌凤章,王贺新,徐国辉,等.木本植物低温胁迫生理及分子机制研究进展[J]. 林业科学, 2015, 51(71): 116-128. DOI: 10.11707 /j.1001-7488.20150713. WU F Z, WANG H X, XU G H, et al. Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress[J]. Scientia Silvae Sinicae, 2015, 51(71): 116-128. [36] CHARRA-VASKOU K, BADEL E, CHARRIER G, et al. Cavitation and water fluxes driven by ice water potential in Juglans regia during freeze-thaw cycles[J].Journal of Experimental Botany, 2016, 67(3): 739-750.DOI: 10.1093/jxb/erv486. [37] LINTUNEN A, PALJAKKA T, RIIKONEN A, et al. Irreversible diameter change of wood segments correlates with other methods for estimating frost tolerance of living cells in freeze-thaw experiment: a case study with seven urban tree species in Helsinki[J]. Annals of Forest Science, 2015, 72(8):1089-1098. DOI: 10.1007/s13595-015-0516-3. |