上海4种常见绿化树种地上生物量模型构建

张希金,冷寒冰,赵广琦,景军,涂爱翠,宋坤1,4*,达良俊1,3,4

南京林业大学学报(自然科学版) ›› 2018, Vol. 42 ›› Issue (02) : 141-146.

PDF(1400862 KB)
PDF(1400862 KB)
南京林业大学学报(自然科学版) ›› 2018, Vol. 42 ›› Issue (02) : 141-146. DOI: 10.3969/j.issn.1000-2006.201704025
研究论文

上海4种常见绿化树种地上生物量模型构建

  • 张希金1,冷寒冰2,赵广琦2,景 军2,涂爱翠1,宋 坤1,4*,达良俊1,3,4
作者信息 +

Allometric models for estimating aboveground biomass for four common greening tree species in Shanghai City, China

  • ZHANG Xijin1, LENG Hanbing2, ZHAO Guangqi2, JING Jun2, TU Aicui1, SONG Kun1,4*, DA Liangjun1,3,4
Author information +
文章历史 +

摘要

【目的】分析上海市4种常见绿化乔木杜英(Elaeocarpus decipiens)、女贞(Ligustrum lucidum)、黄山栾树(Koelreuteria bipinnata)、无患子(Sapindus mukorossi)木材密度随径级大小的变异。构建更适用城市生态系统的常用绿化乔木生物量模型,并验证木材密度与胸径的关系,为全面估算上海市绿化乔木生物量及碳储量奠定基础。【方法】采用Y=aXb幂函数构建了生物量模型,汇总分析针对上海地区9种常见绿化乔木地上各器官生物量的模型,与此次研究构建的生物量模型进行比较,并讨论所建生物量模型的适用性。【结果】杜英树干密度显著小于其他3个树种,各树种树干密度随胸径增加没有明显变化趋势; 构建单一树种生物量模型时可以忽略木材密度对生物量的影响。对4个树种构建的生物量模型总体上拟合效果良好,参数a、b大小因树种和器官不同而有所差异; 其中常绿阔叶树种树干、树枝生物量模型参数b显著小于落叶阔叶树种。所构建的各器官生物量模型与有关学者已发表的上海地区相同树种相应器官模型之间存在差异,尤其对大径阶个体,估算的生物量总体上偏小。【结论】在城市中估算生物量时应根据人为管护强度情况选择适合的生物量模型。

Abstract

【Objective】The objective of this study was to construct more suitable biomass models for urban greening tree species, and to discuss the relationship between the wood density and diameter at breast height(DBH). We expect that the study will improve methods of estimating biomass of greening trees in Shanghai.【Method】Elaeocarpus decipiens, Ligustrum lucidum,Koelreuteria bipinnata, and Sapindus mukorossi were selected to analyze the variation in their wood densities, and to fit their allometric biomass models to the form of Y=aXb. Moreover, we compiled published aboveground biomass models of nine common greening trees in Shanghai, and compared these to our results.【Result】The wood density of Elaeocarpus decipiens was significantly lower than those of the other species, and wood density had no apparent correlation with DBH, which suggested that wood density can be ignored when fitting single species biomass models. The allometric models generally fitted the data well, and the values of coefficients a and b varied among species and organs.The coefficient b values of evergreen broad-leaved trees were significantly lower than those of deciduous broad-leaved trees. The published models yielded different biomass estimationsthan ours, especially for large trees.【Conclusion】Suitable allometric models should be selected for estimating tree biomass in urban green areas according to specific conditions, especially the intensity of greening management.

引用本文

导出引用
张希金,冷寒冰,赵广琦,景军,涂爱翠,宋坤1,4*,达良俊1,3,4. 上海4种常见绿化树种地上生物量模型构建[J]. 南京林业大学学报(自然科学版). 2018, 42(02): 141-146 https://doi.org/10.3969/j.issn.1000-2006.201704025
ZHANG Xijin, LENG Hanbing, ZHAO Guangqi, JING Jun, TU Aicui, SONG Kun1,4*, DA Liangjun1,3,4. Allometric models for estimating aboveground biomass for four common greening tree species in Shanghai City, China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2018, 42(02): 141-146 https://doi.org/10.3969/j.issn.1000-2006.201704025
中图分类号: S758   

参考文献

[1] 杨海军, 邵全琴, 陈卓奇, 等. 森林碳蓄积量估算方法及其应用分析[J]. 地球信息科学学报, 2012, 9(4): 5-12. DOI:10.3969/j.issn.1560-8999.2007.04.002. YANG H J, SHAO Q Q, CHEN Z Q, et al. Summary of estimation methods of carbon storage in forests[J].Geo-Information Science, 2012, 9(4): 5-12.
[2] KAYE J P, MCCULLEY R L, BURKE I C. Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems[J]. Global Change Biology, 2005, 11(4): 575-587.DOI: 10.1111/j.1365-2486.2005.00921.x.
[3] PIAO S, FANG J, CIAIS P, et al. The carbon balance of terrestrial ecosystems in China[J]. Nature, 2009, 458(7241): 1009-1013.DOI:10.1038/nature07944.
[4] 上海市统计局, 国家统计局上海调查总队. 上海统计年鉴2015[M]. 北京: 中国统计出版社, 2015.
[5] 董利虎,李凤日,宋玉文. 东北林区4个天然针叶树种单木生物量模型误差结构及可加性模型[J]. 应用生态学报, 2015, 26(3): 704-714.DOI:10.13287/j.1001-9332.20150106.011. DONG L H, LI F R, SONG Y W. Error structure and additivity of individual tree biomass model for four natural conifer species in Northeast China[J].Chinese Journal of Applied Ecology, 2015, 26(3): 704-714.
[6] 王天博, 陆静. 国外生物量模型概述[J]. 中国农学通报, 2012, 28(16): 6-11.DOI:10.3969/j.issn.1000-6850.2012.16.002. WANGT B, LU J. The Advance on foreign biomass model[J]. Chinese Agricultural Science Bulletin, 2012, 28(16): 6-11.
[7] 罗云建. 华北落叶松人工林生物量碳计量参数研究[D]. 北京: 中国林业科学研究院, 2007. LUO Y J. Study on biomass carbon accounting factors of Larix principis-rupprechtii plantation[D].Beijing: Chinese Academy of Forestry, 2007.
[8] MUGASHA W A, MWAKALUKWA E E, LUOGA E, et al. Allometric models for estimating tree volume and aboveground biomass in lowland forests of Tanzania[J]. International Journal of Forestry Research, 2016,2016: 1-13. DOI:10.1155/2016/8076271.
[9] 徐明锋,柯娴氡,张毅,等. 粤东 6 种阔叶树木材密度及其影响因子研究[J]. 华南农业大学学报, 2016, 37(3): 100-106. DOI:10.7671/j.issn.1001-411X.2016.03.016. XU M F,KE X D,ZHANG Y,et al. Wood densities of six hardwood tree species in Eastern Guangdong and influencing factors[J]. Journal of South China Agricultural University, 2016,37(3): 100-106.
[10] 周志春,王章荣. 影响马尾松天然林样木胸高木材密度因子的分析[J]. 南京林业大学学报(自然科学版), 1989, 13(2):41-45.DOI:10.3969/j.jssn.1000-2006.1989.02.007. ZHOU Z C, WANG Z R. Factors affecting breast height density of wood of sample trees from natural stand of Masson pine[J].Journal of Nanjing Forestry University(Natural Sciences Edition),1989,13(2):41-45.
[11] WHEELER P R, MITCHELL H L. Specific gravity variation in Mississippi pines[R]. North Carolina: Fifth Southern Forest Tree Improvement Conference.1959.
[12] 李泰君,胥辉,丁勇,等. 思茅松树干生物量, 树皮率与基本密度研究[J]. 林业科技, 2008, 33(4): 20-23.DOI: 10.3969/j.issn.1001-9499.2008.04.007. LI T J, XU H, DING Y, et al. Study on biomass model and bark rate and basic density of Pinus kesiya var. langbianensis[J]. Forestry Science & Technology, 2008, 33(4): 20-23.
[13] 朱栗琼. 杉木无性系材性变异研究[D].南宁: 广西大学, 2003. ZHU L Q.Study on wood property vatiation of chinese fir clones[D].Nanning: Guangxi University,2003.
[14] NÁVAR J. Allometric equations for tree species and carbon stocks for forests of northwestern Mexico[J]. Forest Ecology and Management, 2009, 257(2): 427-434. DOI:10.1016/j.foreco.2008.09.028.
[15] 史喜兵, 孙毅宁, 李盼. 常绿树种在郑州市园林绿化中的应用[J]. 陕西农业科学, 2009(5): 115-116.DOI:10.3969/j.issn.0488-5368.2009.05.045.
[16] CORNELISSEN J, DIEZ P C, HUNT R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types[J]. Journal of Ecology, 1996, 84(5): 755-765.DOI: 10.2307/2261337.
[17] HENRY M, BESNARD A, ASANTE W A, et al. Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa[J]. Forest Ecology and Management, 2010, 260(8): 1375-1388.DOI:10.1016/j.foreco.2010.07.040.
[18] 徐有明. 木材学[M]. 北京: 中国林业出版社, 2006.
[19] CHÁIDEZ J D J N. Allometric equations and expansion factors for tropical dry trees of eastern Sinaloa, Mexico[J]. Tropical and Subtropical Agroecosystems, 2008, 10(1): 45-52.
[20] PANSHIN A J, ZEEUW C D. Textbook of wood technology[M]. New York:McGraw-Hill Book Co, 1980.
[21] 王哲, 韩玉洁, 康宏樟, 等. 黄浦江上游主要树种水源涵养林生态系统碳储量[J]. 生态学杂志, 2012,31(8): 1930-1935.DOI:10.13292/j.1000-4890.2012.0239. WANG Z,HAN Y J,KANG H Z,et al. Carbon storage of main tree species plantations for water resources conservation in upper reaches of Huangpu River, Shanghai[J]. Chinese Journal of Ecology, 2012,31(8): 1930-1935.
[22] 任巧,郭雪艳,蔡北溟,等. 宝钢厂区植被碳储量及其固碳效益评价[J]. 城市环境与城市生态, 2012, 25(3): 6-9. REN Q,GUO X Y,CAI B M, et al. Evaluation of vegetation carbon storage and carbon fixation benefits in Shanghai Baosteel factory area[J].Urban Environment & Urban Ecology, 2012, 25(3): 6-9.
[23] 高凯,胡永红,冷寒冰,等. 两种测算香樟单株植物生物量和生产力的方法[J]. 生态学杂志, 2014,33(1): 242-248. GAO K,HU Y H,LENG H B,et al.Two methods of estimating biomass and productivity for Cinnamonum camphora at individual scale[J].Chinese Journal of Ecology, 2014, 33(1): 242-248.
[24] 庄红蕾,BECUWE X,肖春波,等. 上海崇明岛水杉人工林生物量方程构建及固碳潜力研究[J]. 上海交通大学学报(农业科学版), 2012, 29(2): 48-55. DOI:10.3969/J.ISSN.1671-9964.2012.02.009. ZHUANG H L, BECUWE X, XIAO C B, et al. Allometric equation-based estimation of biomass carbon sequestration in metasequoia glyptostroboides plantations in Chongming island,Shanghai[J]. Journal of Shanghai Jiaotong University(Agricultural Science), 2012, 29(2): 48-55.
[25] 王倩玲. 不同间伐强度对人工林碳储量分布格局的影响[D]. 上海: 华东师范大学, 2015. WANG Q L.The effect of thinning intensityon carbon storage distribution pattern of plantation-a study on the water conservation plantation in Fengxian district of Shanghai[D].Shanghai: East China Normal University,2015.
[26] 薛春燕, 王哲, 崔旋, 等. 黄浦江中上游杨树人工林生态系统碳储量研究[J]. 广西植物, 2014,34(3): 338-343.DOI: 10.3969 /j.issn.1000-3142.2014.03.011. XUE C Y,WANG Z,CUI X,et al.Carbon storage of poplar plantations in upper and middle reaches of Huangpu River, Shanghai[J].Guihaia,2014, 34(3): 338-343.
[27] 王哲,杜宝明,韩玉洁,等. 上海外环林带女贞人工林生态系统碳储量[J]. 生态学杂志, 2014, 33(4): 910-914.DOI:10.13292/j.1000-4890.2014.0089. WANG Z,DU B M,HAN Y J,et al.Carbon storage of Ligustrum lucidum plantations in Shanghai out-loop forest belt[J].Chinese Journal of Ecology, 2014, 33(4): 910-914.
[28] 王哲. 黄浦江中上游广玉兰人工林生态系统碳储量特点[J]. 林业世界,2014, 3(3):34-41. DOI: 10.12677/WJF.2014.33007. Wang Z. Carbonstorage of magnolia grandiflora plantations in upper and middle reaches of Huangpu River, Shanghai[J]. World Journal of Forestry, 2014, 3(3):34-41.
[29] CHAVE J, ANDALO C, BROWN S, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests[J]. Oecologia, 2005, 145(1): 87-99.DOI:10.1007/s00442-005-0100-x.

基金

基金项目:上海城市植物资源开发应用工程技术研究中心开放课题(G201504); 国家自然科学基金项目(31500355) 第一作者:张希金(xjzhang1991@163.com),博士生。*通信作者:宋坤(ksong@des.ecnu.edu.cn),讲师。

PDF(1400862 KB)

Accesses

Citation

Detail

段落导航
相关文章

/