[1] 邓贤明, 苗放, 翟涌光, 等. 基于形态学的两种高光谱目标探测改进算法[J]. 中山大学学报(自然科学版), 2017, 56(1): 151-160. DOI: 10.13471/j.cnki.acta.snus.2017. 01. 024.
DENG X M, MIAO F, ZHAI Y G, et al. Two modified target detection algorithms based on morphology for hyperspectral imagery[J]. Acta Scientiarum Naturalum Universitatis Sunyatseni, 2007, 56(1):151 -160.
[2] 高孝杰, 简季, 戴晓爱, 等. 基于Frechet距离的光谱曲线匹配应用分析[J]. 武汉大学学报(信息科学版), 2016, 41(3): 408-414. DOI: 10.13203/j.whugis20140147.
GAO X J, JIAN J, DAI X A, et al. Spectral curve matching application analysis based on frechet distance[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3):408-414.
[3] 李杰, 万幼川. 基于光谱特征参量化的高光谱影像精细分类[J]. 地理空间信息, 2015, 13(4): 86-88. DOI: 10.3969/j.issn.1672-4623.2015.04.031.
LI J, WAN Y C. Fine classification of hyperspectral image based on spectral features parametrization[J]. Geospatial Information, 2015, 13(4): 86-88.
[4] 樊利恒, 吕俊伟, 邓江生. 基于分类器集成的高光谱遥感图像分类方法[J]. 光学学报, 2014, 34(9): 91-101. DOI: 10.3788/AOS201434.0910002.
FAN L H, LÜ J W, DENG J S. Classification of hyperspectral remote sensing images based on bands grouping and classification ensembles [J]. Acta Ootica Sinica, 2014, 34(9):91-101.
[5] 林海军, 张绘芳, 高亚琪, 等. 基于马氏距离法的荒漠树种高光谱识别[J]. 光谱学与光谱分析, 2014, 34(12): 3358-3362. DOI: 10.3964/j.issn.1000-0593(2014)12-3358-05.
LIN H J, ZHANG H F, GAO Y Q, et al. Mahalanobis distance based hyperspectal characteristic discrimination of leaves of different desert tree species[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3358-3362.
[6] 吴见, 彭道黎. 基于空间信息的高光谱遥感植被分类技术[J]. 农业工程学报, 2012, 28(5): 150-153. DOI: 1002-6819(2012)-05-0150-04.
WU J, PENG D L. Vegetation classification technology of hyperspectral remote sensing based on spatial information[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 150-153.
[7] JAY S, GUILLAUME M. A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data[J]. Remote Sensing of Environment, 2014, 147(18):121-132. DOI:10.1016/j.rse.2014.01.026.
[8] 秦进春, 余旭初, 张鹏强, 等. 一种基于核偏最小二乘法的高光谱影像最佳波段选择方法[J]. 测绘科学技术学报, 2013, 30(2): 172-176. DOI: 1673-6338(2013)02-0172-05.
QIN J C, YU X C, ZHANG P Q, et al. An optimal band selection method for hyperspectral imagery based on kernel partial least squares[J]. Journal of Geomatics Science and Technology, 2013, 30(2): 172-176.
[9] 魏祥坡, 余旭初, 付琼莹, 等. 光谱角余弦与相关系数测度组合的光谱匹配分类方法与实践[J]. 地理与地理信息科学, 2016, 32(3): 29-33. DOI: 1672-0504(2016)03-0029-05.
WEI X P, YU X C, FU Q Y, et al. Spectral matching classification approach and experiment combined with spectral angle cosine and spectral correlation coefficient[J] Geography and Geo-Information Science, 2016, 32(3):29-33.
[10] 焦洪赞, 王少宇, 彭正洪. 基于条件随机场的光谱相似性匹配高光谱遥感影像聚类方法[J]. 武汉大学学报(工学版), 2016, 49(6): 937-943. DOI: 10.14188/j.1671-8844.2016-06-023.
JIAO H Z, WANG S Y, PENG Z H. A spectral similarity matching classifier based on conditional random field for hyperspectral remote sensing imagery [J]. Engineering Journal of Wuhan University, 2016, 49(6): 937-943.
[11] MAULIK U, CHAKRABORTY D. Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 77(3):66-78. DOI:10.1016/j.isprsjprs.2012.12.003.
[12] LIN Z L, YAN L M. A support vector machine classifier based on a new kemel function model for hyperspectral data[J]. GIScience and Remote Sensing, 2015, 53(1):1-17. DOI:10.1080/15481603.2015.1114199.
[13] PATRA S, BRUZZONE L. A novel SOM-SVM-based active learning technique for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):6899-7910. DOI:10.1109/TGRS.2014.2305516.
[14] BIGDELI B, SAMADZADEGAN F, REINARTZ P. A decision fusion method based on multiple support vector machine system for fusion of hyperspectral and LIDAR data[J]. International Journal of Image and Data Fusion, 2014, 5(3):196-209. DOI:10.1080/19479832.2014.919964.
[15] 李媛媛, 常庆瑞, 刘秀英, 等. 基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算[J]. 农业工程学报, 2016, 32(16): 135-142. DOI: 1002-6819(2016)-16-0135-08.
LI Y Y, CHANG Q R, LIU X Y, et al. Estimation of maize leaf PAD value based on hyperspectrum and BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 135-142.
[16] 周亚敏, 张荣群, 马鸿元, 等. 基于BP神经网络的盐湖矿物离子含量高光谱反演[J]. 国土资源遥感, 2016, 28(2): 34-40. DOI: 10.6046/gtzyyg.2016. 02. 06.
ZHOU Y M, ZHANG R Q, MA H Y, et al. Retrieving of salt lake mineral ions salinity from hyper-spectral data based on BP neural network[J]. Remote Sensing for Land and Resources, 2016, 28(2): 34-40.
[17] CHENG B Y, LIU Q, LI X W, et al. Building simplification using back propagation neural networks: a combination of cartographer's expertise and raster-based local perception[J]. GIScience and Remote Sensing, 2013, 50(5):527-542. DOI:10.1080/15481603.2013.823748.
[18] ZHONG Y F, ZHANG L P, GONG W. Unsupervised remote sensing image classification using an artificial immune network[J]. International Journal of Remote Sensing, 2011, 32(19):5461-5483. DOI:10.1080/01431161.2010.502155.
[19] 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2): 236-249. DOI: 1007-4619(2016)02-0236-21.
DU P J, XIA J S, XUE Z H, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2): 236-256.
[20] 朱济帅, 尹作霞, 谭琨, 等. 基于空间邻域信息的高光谱遥感影像半监督协同训练[J]. 遥感技术与应用, 2016, 31(6): 1122-1130. DOI: 10.11873/j.issn.1004-0323.2016.6.1122.
ZHU J S, YIN Z X, TAN K, et al. Semi-supervised tri-training hyperspectral image classification approach based on spatial neighborhood information [J]. Remote Sensing Technology and Application, 2016, 31(6): 1122-1130.
[21] 王彩玲, 王洪伟, 胡炳樑, 等. 一种新的空谱联合探测高光谱影像目标探测算法[J]. 光谱学与光谱分析, 2016, 36(4): 1163-1169. DOI: 10.3964/j.issn.1000-0593(2016)04-1163-07.
WANG C L, WANG H W, HU B L, et al. A new spectral-spatial algorithm method for hyperspectral image target detection[J]. Spectroscopy and Spectral Analysis, 2016, 36(4): 1163-1169.
[22] 程志会, 谢福鼎. 基于空间特征与纹理信息的高光谱图像半监督分类[J]. 测绘通报, 2016, 54(12): 56-59. DOI: 10.13474/j.cnki.11-2246.2016.0401.
CHENG Z H, XIE F D. Semi-supervised classification for hyperspectral image based on spatial features and texture information[J]. Bulletin of Surveying and Mapping, 2016, 54(12): 56-59.
[23] 王增茂, 杜博, 张良培, 等. 基于纹理特征和形态学特征融合的高光谱影像分类法[J]. 光子学报, 2014, 43(8): 116-123. DOI: 10.3788/gzxb20144308.0810002.
WANG Z M, DU B, ZHANG L P, et al. Based on texture feature and extend morphological profile fusion for hyperspectral image classification[J]. Acta Photonica Sinica, 2014, 43(8): 116-123.
[24] 余旭初, 谭熊, 付琼莹, 等. 联合纹理和光谱特征的高光谱影像多核分类方法[J]. 测绘通报, 2014, 52(9): 38-42. DOI: 10.13474/j.cnki.11-2246.2014.0289.
YU X C, TAN X, FU Q Y, et al. Combined texture-spectral feature for multiple kernel classification of hyperspectral images[J]. Bulletin of Surveying and Mapping, 2014, 52(9): 38-42.
[25] 胡玉福, 邓良基, 匡先辉, 等. 基于纹理特征的高分辨率遥感图像土地利用分类研究[J]. 地理与地理信息科学, 2011, 27(5): 42-45.
HU Y F, DENG L J, KUANG X H, et al. Study on land use classification of high resolution remote sensing image based on texture feature[J]. Geography and Geo-Information Science, 2011, 27(5): 42-45.
[26] 陈波, 胡玉福, 喻攀, 等. 基于纹理和地形辅助的山区土地利用信息提取研究[J]. 地理与地理信息科学, 2017, 33(1): 1-7. DIO: 10.3969/j.issn.1672-0504.2017.01.001.
CHEN B, HU Y F, YU P, et al. Research on information extraction of land use in mountainous areas based on texture and terrain [J]. Geography and Geo-Information Science, 2017, 33(1): 1-7. DIO: 10.3969/j.issn.1672-0504.2017.01.001.
[27] HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973, 3(6): 610-621.
[28] CRISTO A, FISHER K, PEREZ R M, et al. Optimization of the multi-spectral euclidean distance calculation for FPGA-based spaceborne systems[J]. Aerospace Science and Technology, 2014, 32(1):1-9. DOI:10.1016/j.ast.2013.12.013.
[29] LUO G C, CHEN G Y, TIAN L, et al. Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising[J]. Canadian Journal of Remote Sensing, 2016, 42(2):106-116. DOI:10.1080/07038992.2016.1160772. |