南京林业大学学报(自然科学版) ›› 2018, Vol. 42 ›› Issue (03): 159-166.doi: 10.3969/j.issn.1000-2006.201708015
田 晶,赵雪媛,谢隆聖,权晋谊,姚连梅,王国东,郑要强,刘雪梅*
出版日期:
2018-06-06
发布日期:
2018-06-06
基金资助:
TIAN Jing, ZHAO Xueyuan, XIE Longsheng, QUAN Jinyi, YAO Lianmei, WANG Guodong, ZHENG Yaoqang, LIU Xuemei*
Online:
2018-06-06
Published:
2018-06-06
摘要: SPL(squamosa promoter-binding protein-like)转录因子是植物所特有的一类基因家族,广泛存在于绿色植物中,在植物生长发育中具有重要作用。花发育是植物生殖发育中最为重要的一个过程,涉及不同发育方式的转变,即开花决定、花的发端和花器官发生与发育。简要综述了SPL基因的结构与功能并着重阐述了SPL基因在植物花发育过程中的分子机制及生物学功能。最后总结出: SPL转录因子可直接或间接通过参与光周期途径,赤霉素途径及年龄途径来调控植物的开花时间; SPL基因可通过直接激活下游花分生组织特异基因,如LEAFY(LFY),从而调控植物的成花转变; SPL基因可通过与下游花器官特征基因相互作用来调控花器官及其育性的发育,如调控花序、花柄的长度与外形及花器官的大小; SPL基因可调控植物大小孢子发生及雌雄配子体发育。据拟南芥的相关研究结果,初步构绘出拟南芥开花调控中的分子机制。
中图分类号:
田晶,赵雪媛,谢隆聖,等. SPL转录因子调控植物花发育及其分子机制研究进展[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 159-166.
TIAN Jing, ZHAO Xueyuan, XIE Longsheng, QUAN Jinyi, YAO Lianmei, WANG Guodong, ZHENG Yaoqang, LIU Xuemei. Research advances and molecular mechanism on SPL transcription factors in regulating plant flower development[J].Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(03): 159-166.DOI: 10.3969/j.issn.1000-2006.201708015.
[1] SHI Q, ZHOU L, WANG Y, et al. A strategy for screening monoclonal antibodies for Arabidopsis flowers[J]. Front Plant Sci, 2017, 8: 270. DOI:10.3389/fpls.2017.00270.
[2] MATSUOKA D, YASUFUKU T, FURUYA T, et al. An abscisic acid inducible Arabidopsis MAPKKK, MAPKKK18 regulates leaf senescence via its kinase activity[J]. Plant Mol Biol, 2015, 87(6): 565-575. DOI:10.1007/s11103-015-0295-0. [3] SMYTH J B, WANG J H, BARLOW R M, et al. Experimental acute selenium intoxication in lambs[J]. J Comp Pathol, 1990, 102(2): 197-209. DOI:10.1016/s0021-9975(08)80125-9. [4] COEN E S, MEYEROWITZ E M. The war of the whorls: genetic interactions controlling flower development[J]. Nature, 1991, 353(6339): 31-37. DOI:10.1038/353031a0. [5] THEISSEN G. Development of floral organ identity: stories from the MADS house[J]. Curr Opin Plant Biol, 2001, 4(1): 75-85. DOI:10.1016/s1369-5266(00)00139-4. [6] RIECHMANN J L, HEARD J, MARTIN G, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes[J]. Science, 2000, 290(5499): 2105-2110. [7] INITIATIVE T A G, COPENHAVER G P. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana TAGI ‘The Arabidopsis Genome Initiative'[J]. Nature, 2000, 408:796-815 10.1038/35048692 11130711. 2000, 408: 796-815. [8] CARDON GH, HÖHMANN S, NETTESHEIM K, et al. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition[J]. Plant J, 1997, 12(2): 367-377. DOI:10.1046/j.1365-313x.1997.12020367.x. [9] CARDON G, HÖHMANN S, KLEIN J, et al. Molecular characterisation of the Arabidopsis SBP-box genes[J]. Gene, 1999, 237(1): 91-104. DOI:10.1016/s0378-1119(99)00308-x. [10] KLEIN J, SAEDLER H, HUIJSER P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA[J]. Mol Gen Genet, 1996, 250(1): 7-16. DOI:10.1007/bf02191820. [11] MANNING K, TÖR M, POOLE M, et al. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening[J]. Nat Genet, 2006, 38(8): 948-952. DOI:10.1038/ng1841. [12] LÄNNENPÄÄ M, JÄNÖNEN I, HÖLTTÄ-VUORI M, et al. A new SBP-box gene BpSPL1 in silver birch(Betula pendula)[J]. Physiol Plant, 2004, 120(3): 491-500. DOI:10.1111/j.0031-9317.2004.00254.x. [13] KROPAT J, TOTTEY S, BIRKENBIHL R P, et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element[J]. Proceedings of the National Academy of Sciences, 2005, 102(51): 18730-18735. DOI:10.1073/pnas.0507693102. [14] ARAZI T, TALMOR-NEIMAN M, STAV R, et al. Cloning and characterization of micro-RNAs from moss[J]. Plant J, 2005, 43(6): 837-848. DOI:10.1111/j.1365-313X.2005.02499.x. [15] ERIKSSON EM, BOVY A, MANNING K, et al. Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening[J]. Plant Physiol, 2004, 136(4): 4184-4197. DOI:10.1104/pp.104.045765. [16] MORENO M A, HARPER L C, KRUEGER R W, et al. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis[J]. Genes Dev, 1997, 11(5): 616-628. DOI:10.1101/gad.11.5.616. [17] RIESE M, HÖHMANN S, SAEDLER H, et al. Comparative analysis of the SBP-box gene families in P. patens and seed plants[J]. Gene, 2007, 401(1/2): 28-37. DOI:10.1016/j.gene.2007.06.018. [18] HOU H, LI J, GAO M, et al. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family genes in grape[J]. PLoS ONE, 2013, 8(3): e59358. DOI:10.1371/journal.pone.0059358. [19] HULTQUIST J F, DORWEILER J E. Feminized tassels of maize mop1 and ts1 mutants exhibit altered levels of miR156 and specific SBP-box genes[J]. Planta, 2008, 229(1): 99-113. DOI:10.1007/s00425-008-0813-2. [20] 陈晓博. 参与番茄花柄离区发育的转录因子SPL3的基因功能研究[D]. 北京:中国农业科学院, 2010. [21] XING S, SALINAS M, HÖHMANN S, et al. miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis[J]. Plant Cell, 2010, 22(12): 3935-3950. DOI:10.1105/tpc.110.079343. [22] GANDIKOTA M, BIRKENBIHL R P, HÖHMANN S, et al. The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings[J]. Plant J, 2007, 49(4): 683-693. DOI:10.1111/j.1365-313X.2006.02983.x. [23] WANG Y, HU Z, YANG Y, et al. Function annotation of an SBP-box gene in Arabidopsis based on analysis of co-expression networks and promoters[J]. Int J Mol Sci, 2009, 10(1): 116-132. DOI:10.3390/ijms10010116. [24] WU G. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development, 2006, 133(18): 3539-3547. DOI:10.1242/dev.02521. [25] USAMI T, HORIGUCHI G, YANO S, et al. The more and smaller cells mutants of Arabidopsisthaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty[J]. Development, 2009, 136(6): 955-964. DOI:10.1242/dev.028613. [26] JIAO Y, WANG Y, XUE D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nat Genet, 2010, 42(6): 541-544. DOI:10.1038/ng.591. [27] WANG H, NUSSBAUM-WAGLER T, LI B, et al. The origin of the naked grains of maize[J]. Nature,2005, 436(7051): 714-719. DOI:10.1038/nature03863. [28] UNTE U S, SORENSEN A M, PESARESI P, et al. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis[J]. Plant Cell, 2003, 15(4): 1009-1019. DOI:10.1105/tpc.010678. [29] ZHANG Y, SCHWARZ S, SAEDLER H, et al. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis[J]. Plant Mol Biol, 2007, 63(3): 429-439. DOI:10.1007/s11103-006-9099-6. [30] STONE J M, LIANG X, NEKL E R, et al. Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1[J]. Plant J, 2005, 41(5): 744-754. DOI:10.1111/j.1365-313X.2005.02334.x. [31] GUO J, SONG J, WANG F, et al. Genome-wide identification and expression analysis of rice cell cycle genes[J]. Plant Mol Biol, 2007, 64(4): 349-360. DOI:10.1007/s11103-007-9154-y. [32] YAMASAKI K, KIGAWA T, INOUE M, et al. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors[J]. J Mol Biol, 2004, 337(1): 49-63. DOI:10.1016/j.jmb.2004.01.015. [33] BIRKENBIHL RP, JACH G, SAEDLER H, et al. Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains[J]. J Mol Biol, 2005, 352(3): 585-596. DOI:10.1016/j.jmb.2005.07.013. [34] ALVAREZ-BUYLLA E R, BENÍTEZ M, CORVERA-POIRÉ A, et al. Flower development[J/OL]. The Arabidopsis Book, 2010, 8: e0127. DOI:10.1199/tab.0127. [35] JACK T. Molecular and genetic mechanisms of floral control[J]. Plant Cell, 2004, 16: 17. DOI:10.1105/tpc.017038. [36] TEOTIA S, TANG G. To bloom or not to bloom: role of microRNAs in plant flowering[J]. Mol Plant,2015, 8(3): 359-377. DOI:10.1016/j.molp.2014.12.018. [37] LEE J, OH M, PARK H, et al. SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy[J]. Plant J, 2008, 55(5): 832-843. DOI:10.1111/j.1365-313X.2008.03552.x. [38] SCHMID M, UHLENHAUT N H, GODARD F, et al. Dissection of floral induction pathways using global expression analysis[J]. Development, 2003, 130(24): 6001-6012. DOI:10.1242/dev.00842. [39] JUNG J H, JU Y, SEO P J, et al. The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis[J]. Plant J, 2012, 69(4): 577-588. DOI:10.1111/j.1365-313X.2011.04813.x. [40] LAL S, PACIS L B, SMITH H M. Regulation of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE genes/microRNA156 module by the homeodomain proteins PENNYWISE and POUND-FOOLISH in Arabidopsis[J]. Mol Plant, 2011, 4(6): 1123-1132. DOI:10.1093/mp/ssr041. [41] PRESTON J C, HILEMAN L C. SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes[J]. Plant J, 2010, 62(4): 704-712. DOI:10.1111/j.1365-313X.2010.04184.x. [42] YU S, GALVAO V C, ZHANG Y C, et al. Gibberellin regulates the Arabidopsis floral transitionthrough miR156-Targeted SQUAMOSA PROMOTER BINDING-LIKE transcription factors[J]. The Plant Cell, 2012, 24(8): 3320-3332. DOI:10.1105/tpc.112.101014. [43] YU S, CAO L, ZHOU C M, et al. Sugar is an endogenous cue for juvenile-to-adult phase transition in plants[J]. eLife, 2013, 2. DOI:10.7554/elife.00269. [44] CHUCK G, CIGAN A M, SAETEURN K, et al. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA[J]. Nat Genet, 2007, 39(4): 544-549. DOI:10.1038/ng2001. [45] ZHANG T, WANG J, ZHOU C. The role of miR156 in developmental transitions in Nicotiana tabacum[J]. Sci China Life Sci, 2015, 58(3): 253-260. DOI:10.1007/s11427-015-4808-5. [46] XIE K, WU C, XIONG L. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice[J]. Plant Physiol, 2006, 142(1): 280-293. DOI:10.1104/pp.106.084475. [47] HYUN Y, RICHTER R, VINCENT C, et al. Multi-layered regulation of SPL15 and cooperation with SOC1 integrate endogenous flowering pathways at the Arabidopsis shoot meristem[J]. Dev Cell, 2016, 37(3): 254-266. DOI:10.1016/j.devcel.2016.04.001. [48] WU G, PARK M Y, CONWAY S R, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4): 750-759. DOI:10.1016/j.cell.2009.06.031. [49] HYUN Y, RICHTER R, COUPLAND G. Competence to flower: age-controlled sensitivity to environmental cues[J]. Plant Physiology, 2016, 173(1): 36-46. DOI:10.1104/pp.16.01523. [50] AUKERMAN MJ, SAKAI H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes[J]. Plant Cell, 2003, 15(11): 2730-2741. DOI:10.1105/tpc.016238. [51] JUNG J H, SEO Y H, SEO P J, et al. The GIGANTEA-regulated MicroRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis[J]. The Plant Cell Online, 2007, 19(9): 2736-2748. DOI:10.1105/tpc.107.054528. [52] MAY P, LIAO W, WU Y, et al. The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development[J]. Nat Commun, 2013, 4: 2145. DOI:10.1038/ncomms3145. [53] KIM J J, LEE J H, KIM W, et al. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis[J]. Plant Physiol, 2012, 159(1): 461-478. DOI:10.1104/pp.111.192369. [54] POETHIG R S. Phase change and the regulation of developmental timing in plants[J]. Science, 2003, 301(5631): 334-336. DOI:10.1126/science.1085328. [55] BÄURLE I, DEAN C. The timing of developmental transitions in plants[J]. Cell, 2006, 125(4): 655-664. DOI:10.1016/j.cell.2006.05.005. [56] HUIJSER P, SCHMID M. The control of developmental phase transitions in plants[J]. Development,2011, 138(19): 4117-4129. DOI:10.1242/dev.063511. [57] JUNG J H, SEO P J, KANG S K, et al. miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions[J]. Plant Mol Biol, 2011, 76(1/2): 35-45. DOI:10.1007/s11103-011-9759-z. [58] YAMAGUCHI A, WU M F, YANG L, et al. The MicroRNA-regulated SBP-Box transcription factor SPL3 Is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1[J]. Developmental Cell,2009, 17(2): 268-278. DOI:10.1016/j.devcel.2009.06.007. [59] GOU JY, FELIPPES FF, LIU CJ, et al. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor[J]. Plant Cell, 2011, 23(4): 1512-1522. DOI:10.1105/tpc.111.084525. [60] PROVENIERS M. Sugars speed up the circle of life[J]. eLife, 2013, 2: e00625. DOI:10.7554/eLife.00625. [61] YANG L, CONWAY S R, POETHIG R S. Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156[J]. Development, 2011, 138(2): 245-249. DOI:10.1242/dev.058578. [62] YANG L, XU M, KOO Y, et al. Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C[J]. eLife, 2013, 2: e00260. DOI:10.7554/eLife.00260. [63] KING R W, HISAMATSU T, GOLDSCHMIDT E E, et al. The nature of floral signals in Arabidopsis. I. photosynthesis and a far-red photoresponse independently regulate flowering by increasing expression of FLOWERING LOCUS T(FT)[J]. Journal of Experimental Botany, 2008, 59(14): 3811-3820. DOI:10.1093/jxb/ern231. [64] IRISH V F. The flowering of Arabidopsis flower development[J]. Plant J, 2010, 61(6): 1014-1028. DOI:10.1111/j.1365-313X.2009.04065.x. [65] GOLDBERG RB, DE PAIVA G, YADEGARI R. Plant embryogenesis: zygote to seed[J]. Science, 1994, 266(5185): 605-614. DOI:10.1126/science.266.5185.605. [66] LORD E M, RUSSELL S D. The mechanisms of pollination and fertilization in plants[J]. Annu Rev Cell Dev Biol, 2002, 18: 81-105. DOI:10.1146/annurev.cellbio.18.012502.083438. [67] CHAUDHURY A M, MING L, MILLER C, et al. Fertilization-independent seed development in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, 1997, 94(8): 4223-4228. DOI:10.1073/pnas.94.8.4223. [68] OHAD N, YADEGARI R, MARGOSSIAN L, et al. Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization[J]. Plant Cell, 1999, 11(3): 407-416. DOI:10.1105/tpc.11.3.407. [69] AUNG B, GRUBER M Y, AMYOT L, et al. MicroRNA156 as a promising tool for alfalfa improvement[J]. Plant Biotechnol J, 2015, 13(6): 779-790. DOI:10.1111/pbi.12308. [70] FERREIRA E SILVA GF, SILVA EM, AZEVEDO Mda S, et al. microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development[J]. Plant J, 2014, 78(4): 604-618. DOI:10.1111/tpj.12493. [71] XING S, SALINAS M, GARCIA-MOLINA A, et al. SPL8 and miR156-targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning[J]. Plant J, 2013, 75(4): 566-577. DOI:10.1111/tpj.12221. [72] WANG Y, WANG Z, AMYOT L, et al. Ectopic expression of miR156 represses nodulation and causes morphological and developmental changes in Lotus japonicus[J]. Mol Genet Genomics, 2015, 290(2): 471-484. DOI:10.1007/s00438-014-0931-4. [73] SHIKATA M, KOYAMA T, MITSUDA N, et al. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase[J]. Plant Cell Physiol, 2009, 50(12): 2133-2145. DOI:10.1093/pcp/pcp148. [74] KRIZEK B A, ANDERSON JT. Control of flower size[J]. J Exp Bot, 2013, 64(6): 1427-1437. DOI:10.1093/jxb/ert025. [75] HEPWORTH J, LENHARD M. Regulation of plant lateral-organ growth by modulating cell number and size[J]. Curr Opin Plant Biol, 2014, 17: 36-42. DOI:10.1016/j.pbi.2013.11.005. [76] WANG Z, WANG Y, KOHALMI SE, et al. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 2 controls floral organ development and plant fertility by activating ASYMMETRIC LEAVES 2 in Arabidopsis thaliana[J]. Plant Mol Biol, 2016, 92(6): 661-674. DOI:10.1007/s11103-016-0536-x. [77] KANRAR S, BHATTACHARYA M, ARTHUR B, et al. Regulatory networks that function to specify flower meristems require the function of homeobox genes PENNYWISE and POUND-FOOLISH in Arabidopsis[J]. Plant J, 2008, 54(5): 924-937. DOI:10.1111/j.1365-313X.2008.03458.x. [78] HAY A, TSIANTIS M. KNOX genes: versatile regulators of plant development and diversity[J]. Development, 2010, 137(19): 3153-3165. DOI:10.1242/dev.030049. [79] GUO M, THOMAS J, COLLINS G, et al. Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis[J]. Plant Cell, 2008, 20(1): 48-58. DOI:10.1105/tpc.107.056127. [80] WEIGEL D, NILSSON O. A developmental switch sufficient for flower initiation in diverse plants[J]. Nature, 1995, 377(6549): 495-500. DOI:10.1038/377495a0. [81] WEIGEL D, ALVAREZ J, SMYTH DR, et al. LEAFY controls floral meristem identity in Arabidopsis[J]. Cell, 1992, 69(5): 843-859. DOI:10.1016/0092-8674(92)90295-n. [82] YAMAGUCHI N, YAMAGUCHI A, ABE M, et al. LEAFY controls Arabidopsis pedicel length and orientation by affecting adaxial-abaxial cell fate[J]. Plant J, 2012, 69(5): 844-856. DOI:10.1111/j.1365-313X.2011.04836.x. [83] BEEMSTER G T, FIORANI F, INZÉ D. Cell cycle: the key to plant growth control[J]. Trends Plant Sci,2003, 8(4): 154-158. DOI:10.1016/S1360-1385(03)00046-3. [84] MIZUKAMI Y. A matter of size: developmental control of organ size in plants[J]. Curr Opin Plant Biol,2001, 4(6): 533-539. DOI:10.1016/s1369-5266(00)00212-0. [85] LIU N, TU L, WANG L, et al. MicroRNA 157-targeted SPL genes regulate floral organ size and ovule production in cotton[J]. BMC Plant Biol, 2017, 17(1): 7. DOI:10.1186/s12870-016-0969-z. |
[1] | 高源, 孙佳彤, 周晨光, 姜立泉, 李伟, 李爽. LBD12转录因子调控毛果杨木材形成研究[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 29-38. |
[2] | 贾展慧, 贾晓东, 许梦洋, 莫正海, 翟敏, 宣继萍, 张计育, 王刚, 王涛, 郭忠仁. 薄壳山核桃原花青素合成关键酶基因的克隆与表达分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 49-57. |
[3] | 王竹雯, 国艳娇, 李爽, 周晨光, 姜立泉, 李伟. 基于CRISPR/Cas9的毛果杨PtrHBI1基因功能解析[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 31-39. |
[4] | 侯静, 毛金燕, 翟惠, 王洁, 尹佟明. CRISPR/Cas技术在木本植物改良中的应用[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 24-30. |
[5] | 孙佳彤, 国艳娇, 李爽, 周晨光, 姜立泉, 李伟. 基于CRISPR/Cas9的毛果杨bHLH106转录因子的功能研究[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 15-23. |
[6] | 施季森. CRISPR:从“盲盒”基因编辑到“精准靶向”基因组编辑的未竟之旅[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 12-14. |
[7] | 王培龙, 杨妮, 张傲然, 唐努尔·塞力克, 李爽, 高彩球. 刚毛柽柳ThPCS1基因克隆与镉胁迫应答分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 71-78. |
[8] | 莫正海, 李风达, 苏文川, 曹凡, 彭方仁, 李永荣. 薄壳山核桃嫁接愈合过程中CiMYB46基因的克隆与表达分析[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 156-162. |
[9] | 刘晓威,杨秀艳,武海雯,刘肖艳,朱建峰,张华新. NaCl胁迫下红砂种子萌动期差异表达基因的转录组分析[J]. 南京林业大学学报(自然科学版), 2019, 43(03): 28-36. |
[10] | 刘中原,姜波,吕佳欣,李新苹,高彩球. 刚毛柽柳Th2CysPrx基因的互作蛋白及其表达模式分析[J]. 南京林业大学学报(自然科学版), 2019, 43(02): 86-92. |
[11] | 杨桂燕,于丽丽,赵玉琳,赵震,高彩球. 刚毛柽柳TheIF1A基因转入酵母的抗逆能力分析[J]. 南京林业大学学报(自然科学版), 2014, 38(05): 62-66. |
[12] | 官民晓,刘雪梅,张妍,刘瀛,孙丰宾. 白桦SPL8转录因子基因的分离及转录表达分析[J]. 南京林业大学学报(自然科学版), 2013, 37(03): 17-22. |
[13] | 张凯敏,王玉成,杨桂燕,高彩球. 柽柳ThPR1基因的克隆与表达分析[J]. 南京林业大学学报(自然科学版), 2013, 37(02): 45-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||