[1] 裘波音. 水稻铬胁迫耐性的遗传分析与还原型谷胱甘肽缓解铬毒害的机理研究[D]. 杭州: 浙江大学, 2012. QIU B Y. Genetic analysis of rice Gr-tolerance and mechanism study on GSH-alleviating effect on Cr toxicity[D]. Hangzhou: Zhejiang University,2012. [2] 张志雯, 秦素平, 陈于和, 等. 硅对铬胁迫下小麦幼苗超微结构和铬吸收积累的影响[J]. 麦类作物学报, 2015, 35(4): 548-554. DOI:10.7606/j.issn.1009-1041.2015.04.16. ZHANG Z W, QIN S P, CHEN Y H, et al. Effect of silicon on ultrastructure, chromium absorption and accumulation of wheat seedlings under chromium stress[J]. Journal of Triticeae Crops, 2015, 35(4): 548-554. [3] 李晶晶, 彭恩泽. 综述铬在土壤和植物中的赋存形式及迁移规律[J]. 工业安全与环保, 2005, 31(3): 31-33. DOI:10.7606/j.issn.1009-1041.2015.204.16. LI J J, PENG E Z. Summarization on the existing form and transferring rules of chromium in soil[J]. Industrial Safety and Environmental Protection, 2005, 31(3): 31-33. [4] 梅磊, 李玲, DAUD M K, 等. 棉花对重金属胁迫的应答反应与抗性机理研究进展[J]. 棉花学报, 2018, 30(1): 102-110. DOI: 10.11963/1002-7807.mlzsj.20171107. MEI L, LI L, DAUD M K, et al. Advances on response and resistance to heavy metal stress in cotton[J]. Cotton Science, 2018, 30(1): 102-110. [5] CHOUDHURY S, PANDA S K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense(Schwaegr.)Broth. under chromium and lead phytotoxicity[J]. Water, Air and Soil Pollution, 2005, 167(1-4):73-90. DOI:10.1007/s11270-005-8682-9. [6] 邵云, 刘会娟, 胡永娟, 等. 土壤质地对铬胁迫下小麦灌浆期形态与旗叶光合特性的影响[J]. 麦类作物学报, 2012, 32(6): 1150-1155.DOI:10.7606/j.issn.1009-1041.2012.06.025. SHAO Y, LIU H J, HU Y J. Effects of soil textures on morphology and photosynthetic characteristics of flag leaves of wheat during filing stage in chromium polluted soils[J]. Journal of Triticeae Crops,2012, 32(6): 1150-1155. [7] 喻谨, 汤锋, 岳永德, 等. ICP-MS法分析10种箬竹属竹叶中矿质元素质量分数[J]. 东北林业大学学报, 2015, 43(2): 19-22,32. DOI:10.13759/j.cnki.dlxb.2015.02.002. YU J, TANG F, YUE Y D, et al. Mineral element contents in ten species of leaves from Indocalamus by ICP-MS[J]. Journal of Northeast Forestry University, 2015, 43(2): 19-22,32. [8] WANG T, YANG W H, XIE Y F, et al. Effects of exogenous nitric oxide on the photosynthetic characteristics of bamboo(Indocalamus barbatus McClure)seedlings under acid rain stress[J]. Plant Growth Regulation, 2017, 82(1): 69-78. DOI:10.1007/s10725-016-0239-y. [9] 王爱云, 黄姗姗, 钟国锋, 等. 铬胁迫对3种草本植物生长及铬积累的影响[J]. 环境科学, 2012, 33(6):2018-2037.DOI:10.13227/j.hjkx.2012.06.007. WANG A Y, HUANG S S, ZHONG G F, et al. Effect of Cr(VI)stress on growth of three herbaceous plants and their Cr uptake[J].Environment Science, 2012, 33(6): 2028-2037. [10] BONET A, POSCHENRIEDER C, BARCELO J. Chromium Ⅲ-iron interaction in Fe-deficient and Fe-sufficient bean plants. I. Growth and nutrient content[J]. Journal of Plant Nutrition, 1991, 14(4): 403-414. DOI:10.1080/01904169109364211. [11] 杨国远, 万凌琳, 雷学青, 等. 重金属铅、铬胁迫对斜生栅藻的生长、光合性能及抗氧化系统的影响[J]. 环境科学学报, 2014, 34(6): 1606-1614. DOI:10.13671/j.hjkxxb.2014.0221. YANG G Y, WAN L L, LEI X Q, et al. Effects of lead and chromium on the growth, photosynthetic performance, and antioxidant activity of Scenedesmus obliquus[J]. Acta Scientiae Circumstantiae, 2014, 34(6): 1606-1614. [12] SHANKER A K, DJANAGUIRAMAN M, SUDHAGAR R, et al. Diferential antioxidative response of ascorbate glutathione pathway enzymes and metabolites to chromium speciation stress in green gram(Vigna radiata (L.)R.Wilczek. cv CO 4)roots[J]. Plant Science, 2004, 166(4): 1035-1043. DOI: 10.1016/ j. plantsci.2003.12.015. [13] 顾艾博. 铬、铜胁迫对2种玉簪生长及生理特性的影响[D]. 长春: 吉林农业大学, 2014. GU A B. Effects of chromium and copper stress on growth and physiological characteristics of two kinds of Hosta[D]. Changchun: Jilin Agricultural University, 2014. [14] 王海珍, 韩路, 徐雅丽,等. 土壤水分梯度对灰胡杨光合作用与抗逆性的影响[J]. 生态学报, 2017, 37(2): 432-442. DOI: 10.5846 / stxb201507291597. WANG H Z, HAN L, XU Y L,et al. Effects of soil water gradient on photosynthetic characteristics and stress resistance of Populus pruinosa in the Tarim Basin, China[J]. Acta Ecologica Sinica, 2017, 37(2): 432-442. [15] 何亚飞, 张珊珊, 孙鑫, 等. 高频度模拟酸雨胁迫条件下菲白竹的光合响应[J]. 南京林业大学学报(自然科学版), 2016, 40(4): 49-55. DOI:10.3969/j.isn.100-206. 2016. 04.008. HE Y F, ZHANG S S, SUN X, et al. Response of photosynthetic characteristics of Pleioblastus fortunei to high frequent simulated acid rain [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(4): 49-55. [16] HU H, WANG L, ZHOU Q, et al. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice[J]. Environmental Science and Pollution Research, 2016, 23(9): 8902-8916. DOI:10.1007/s11356-015-5962-9. [17] 王碧霞, 肖娟, 冯旭, 等. 铬胁迫对葎草雌雄植株光合生理特性的不同影响[J]. 草业学报, 2016, 25(7): 131-139. DOI:10.11686/cyxb2015436. WANG B X, XIAO J, FENG X, et al. Effects of Chromium stress on physiological and ecophysiological characteristics of male and female plants of Humulus scandens[J]. Acta Prataculturae Sinica, 2016, 25(7): 131-139. [18] PANDEY N, SHARMA C P. Chromium interference in iron nutrition and water relations of cabbage[J]. Environmental and Experimental Botany, 2003, 49(3): 195-200. DOI:10.1016/s0098-8472(02)00088-6. [19] 陈晶, 穆燕, 陈明, 等. 盐肤木对重金属铬胁迫的生理生化反应研究[J]. 生态科学, 2017, 36(2):26-31. DOI:10.14108/j.cnki.1008-8873.2017.02.004. CHEN J, MU Y, CHEN M, et al. Response of physiology and biochemistry of Rhus chinensis to heavy metal chromium stress [J]. Ecological Science, 2017, 36(2): 26-31. [20] 王碧霞, 胥晓, 李霄锋. 葎草幼苗光合生理特性对铬胁迫的响应[J]. 草业学报, 2014, 23(4): 181-188. DOI:10.11686/cyxb20140422. WANG B X, XU X, LI X F. Physiological and ecophysiological response of Humulus scandens seedlings chromium stress[J]. Acta Prataculturae Sinica, 2014, 23(4): 181-188. [21] FARIAS M E, MARTINAZZO E G, BACARIN M A. Chlorophyll fluorescence in the evaluation of photosynthetic electron transport chain inhibitors in the pea[J]. Revista Ciencia Agronômica, 2016, 47(1): 633-643. DOI: 10.5935 /1806-6690.20160021. [22] BJORKMAN O. High-irradiance stress in higher plants and interaction with other stress factors[J]. Progressin Photosynthesis Research, 1987, 4: 11-18. DOI: 10.1007/978-94-017-0519-6_2. [23] SUBHASH N, WENZELl O, LICHTENTHALER H K. Changes in blue-green and chlorophyll fluorescence emission and fluorescence ratios during senescence of tobacco plants[J]. Remote Sensing of Environment, 1999, 69(3): 215-213. DOI: 10.1016/S0034-4257(99)00029-2. |