[1] FERNANDES S O, BONIN P C, MICHOTEY V D, et al. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium[J]. Scientific Reports, 2012, 2: 419. DOI: 10.1038/srep00419. [2] ZHANG W J, ZHANG Y, SU W T, et al. Effects of cathode potentials and nitrate concentrations on dissimilatory nitrate reductions by Pseudomonas alcaliphila in bioelectrochemical systems [J]. Journal of Environmental Sciences, 2014, 26(4):885-891. DOI: 10.1016/S1001-0742(13)60460-X. [3] SAVVIDES C, PAPADOPOULOS A, HARALAMBOUS K J, et al. Sea sediments contaminated with heavy metals: metal speciation and removal [J]. Water Scientific Technology, 1995, 32(10):65-73. DOI: 10.1016/0273-1223(96)00077-7. [4] MAGALHãES C, COSTA J, TEIXEIRA C, et al. Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary, Portugal [J]. Marine Chemistry, 2007, 107:332-341. DOI:10.1016/j.marchem.2007.02.005. [5] 徐继荣,王友绍,孙松.海岸带地区的固氮、氨化、硝化与反硝化特征[J].生态学报,2004,24(12):2907-2914. DOI: 10.3321/j.issn:1000-0933.2004.12.036. XU J R, WANG Y S, SUN S. The characteristics of nitrogen fixation, ammonification, nitrification and denitrification in coastal zones [J]. Acta EcologicaSinica, 2004, 24(12): 2907-2914. [6] HAN H Y, LI Z K. Effects of macrophyte-associated nitrogen cycling bacteria on anammox and denitrification in river sediments in the Taihu Lake region of China[J]. Ecological Engineering, 2016, 93:82-90. DOI:10.1016/j.ecoleng.2016.05.015. [7] SAEED T, SUN G Z. Enhanced denitrification and organics removal in hybrid wetland columns: comparative experiments[J].Bioresource Technology, 2011, 102: 967-974.DOI:10.1016/j.biortech.2010.09.056. [8] 杨杉,吴胜军,蔡延江,等.硝态氮异化还原机制及其主导因素研究进展[J].生态学报,2016,36(5):1223-1232. DOI: 10.5846/stxb201407181464. YANG S, WU S J, CAI Y J, et al. The synergetic and competitive mechanism and the dominant factors of dissimilatory nitrate reduction processes: a review [J]. Acta Ecologica Sinica, 2016, 36(5):1223-1232. [9] KIM S Y, VERAART A J, FRANKE M M, et al. Combined effects of carbon, nitrogen and phosphorus on CH4 production and denitrification in wetland sediments [J]. Geoderma, 2015, 259-260: 354-61.DOI:10.1016/j.geoderma.2015.03.015. [10] KOROLA A R, AHNA C, NOE G B. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment [J]. Ecological Engineering, 2016, 95: 252-265. DOI:10.1016/j.ecoleng.2016.06.057. [11] 徐莎,陈圆,印杰,等.典型滨海湿地沉积物反硝化与硝态氮氨化相对重要性研究[J].南京林业大学学报(自然科学版),2016,40(2):9-15. DOI: 10.3969/j.issn.1000-2006.2016.02.002. XU S, CHEN Y, YIN J, et al. The relative importance of dissimilatory nitrate reduction to ammonium and denitrification in sediments in a typical coastal wetland [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(2): 9-15. [12] 韩建刚,曹雪.典型滨海湿地干湿交替过程氮素动态的模拟研究[J].环境科学,2013(6): 2383-2389. DOI:10.13227/j.hjkx.2013.06.054. HAN J G, CAO X. Effects of drying-rewetting alternation on nitrogen dynamics in a typical coastal wetland: a simulation study [J]. Environmental Science, 2013(6): 2383-2389. [13] SGOURIDIS F, HEPPELL C M, WHARTON G, et al. Denitrification and dissimilatory nitrate reduction to ammonium(DNRA)in a temperate re-connected floodplain [J]. Water Research, 2011, 45(16):4909-4922. DOI:10.1016/j.watres.2011.06.037. [14] SAKADEVAN K K, ZHENG H, BAVOR H J. Impact of heavy metals on denitrification in surface wetland sediments receiving wastewater[J]. Water Science and Technology, 1999, 40(3): 349-355. DOI: 10.1016/S0273-1223(99)00471-0. [15] 赵迪.重金属胁迫对潮滩沉积物反硝化作用影响机制的初步研究[D].上海:华东师范大学,2013. ZHAO D. A preliminary research on the effect of heavy metals on denitrification in tidal flat sediments[D]. Shanghai: East China Normal University, 2013. [16] 马俊,傅成诚.不同剂量外源重金属注入对土壤重金属形态分布的影响[J].科学技术与工程,2016,35(16):129-135.DOI: 10.3969/j.issn.1671-1815.2016.35.020. MA J, FU C C. Effect of different doses of exogenous heavy metals on the fractionation of heavy metals in soil [J]. Science Technology and Engineering, 2016, 35(16):129-135. [17] 傅成诚,周亮,梅凡民. 塿土中外源重金属Pb、Zn、Cd 形态分布随时间变化的规律[J].土壤与作物,2012,1(4): 199-204. FU C C, ZHOU L, MEI F M. Changes of form for exogenous heavy metals Pb, Zn and Cd in Lou soil [J]. Soil and Crop, 2012, 1(4): 199-204. [18] 周健,李虎,李晓林,等.外源Cd胁迫下施污土壤中重金属的形态特征和土壤酶活性的关系[J].环境化学,2016,35(10): 2036-2043. DOI: 10.7524/j.issn.0254-6108.2016.10. 2016031404. ZHOU J, LI H, LI X L, et al. The relationship between forms of Cd and soil enzymatic activities in sludge-amended soil [J]. Environmental Chemistry, 2016, 35(10):2036-2043. [19] 刘霞,刘树庆,王胜爱.河北主要土壤中重金属镉、铅形态与土壤酶活性的关系[J].河北农业大学学报,2002,25(1):33-37. DOI:10.3969/j.issn.1000-1573.2002.01.009. LIU X, LIU S Q, WANG S A. The relationship between heavy metal forms and soil enzymatic activities in the main soils of Hebei Province [J]. Journal of Agricultural University of Hebei, 2002, 25(1): 33-37. [20] 袁兴中,陆健健,刘红.河口盐沼植物对大型底栖动物群落的影响[J].生态学报,2002,22(3): 326-333. DOI:10.3321/j.issn:1000-0933.2002.03.006. YUAN X Z, LU J J, LIU H. Influence of characteristics of scirpusmariqueter community on the benthic macro-invertebrate in a salt marsh of the Changjiang estuary [J]. Acta Ecologica Sinica, 2002, 22(3): 326-333. [21] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学出版社,2000. [22] 蔡贵信,李新慧,曹亚澄,等.一种直接测定硝化-反硝化气体的15N示踪-质谱法[J].植物营养与肥料学报,1995,1(3/4): 53-58. DOI:10.3321/j.issn:1008-505X.1995.04.008. CAI G X, LI X H, CAO Y C, et al. A method for direct measurement of 15N-gases from nitrification-denitrification with mass spectrometer [J]. Plant Nutrition and Fertilizer Sciences, 1995, 1(3/4): 53-58. [23] MUüLLER C, LAUGHLIN R J, STEVENS R J. A 15N tracing model to analyze transformations in old grassland soil [J]. Soil Biology and Biochemistry, 2004, 36(4):619-632. DOI: 10.1016/j.soilbio.2003.12.006. [24] 孙建飞,白娥,戴崴巍,等.15N标记土壤连续培养过程中扩散法测定无机氮同位素方法改进[J]. 生态学杂志,2014,33(9): 2574-2580. DOI: 10.13292/j.1000-4890.2014.0176. SUN J F, BAI E, DAI W W, et al. Improvements of the diffusion method to measure inorganic nitrogen isotope of 15N labeled soil [J]. Chinese Journal of Ecology, 2014, 33(9):2574-2580. [25] RAURET G, LOPEZ-SANCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J].Journal of Environmental Monitoring, 1999, 1:57-61. DOI: 10.1039/a807854h. [26] SAHUQUILLOA A, LPEZ-SÁNCHEZA J F, RUBIOAR, et al. Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure [J]. Analytica Chimica Acta, 1999, 382(3): 317-327. DOI: 10.1016/S0003-2670(98)00754-5. [27] 黄正,SAKADEVANK,BAVOR J.Cd2+、Cu2+和Zn2+对人工湿地反硝化作用的影响[J].环境科学,2000(4):110-112.DOI: 10.13227/j. hjkx. 2000. 04. 026. HUANG Z, SAKADEVAN K, BAVOR J.Cd2+, Cu2+and Zn2+ influence on denitrification in constructed wetland [J]. Environmental Science, 2000(4):110-112. [28] 胡荣桂,李玉林,彭佩钦,等.重金属镉、铅对土壤生化活性影响的初步研究[J].农业环境保护,1990(4):6-9. HU R G, LI Y L, PENG P Q, et al. Preliminary study on the effects of heavy metal cadmium and lead on soil biochemical activity [J]. Agricultural Environmental Protection, 1990(4):6-9. [29] LAVERMAN A M, CANAVAN R W, SLOMP C P, et al. Potential nitrate removal in a coastal freshwater sediment(Haringvliet Lake,the Netherlands)and response to salinization [J]. Water Resource, 2007, 41(14):3061-3068.DOI: 10.1016/j.watres.2007,04:002. [30] RüTTING T, BOECKX P, MÜLLER C, et al. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle [J]. Biogeosciences, 2011, 8(7): 1779-1791. DOI: 10.5194/bg-8-1779-2011. [31] 郑平,胡宝兰,徐向阳,等.厌氧氨氧化电子受体的研究[J].应用与环境生物学报,1998,4(1):74-76. DOI:10.3321/j.issn:1006-687X.1998.01.017. ZHENG P, HU B L, XU X Y, et al. Study on electron acceptor of mixed microbial culture for anaerobic ammonia oxidation [J]. Chinese Journal Applied and Environmental Biology,1998,4(1): 74-76. [32] ZOMEREN C V, WHITE J R, DE LAUNE R D. Ammonification and denitrification rates in coastal Louisiana bayou sediment and marsh soil: implications for Mississippi River diversion management [J].Ecological Engineering, 2013, 54: 77-81. DOI:10.1016/j.ecoleng. 2013.01. 029. [33] 莫争,王春霞,陈琴,等.重金属Cu、Pb、Zn、Cr、Cd在土壤中的形态分布和转化[J].农业环境保护,2002,21(1): 9-12. MO Z, WANG C X, CHEN Q, et al. Form distribution and transformation of heavy metals of Cu,Pb,Zn,Cr and Cd in soils[J]. Agro-environmental Protection, 2002, 21(1): 9-12. [34] 陈小娇,李取生,杜烨锋,等.外源重金属在珠江河口湿地土壤中的形态转化[J].生态与农村环境学报,2010,26(3): 251-256. DOI:10.3969/j.issn.1673-4831.2010.03.012. CHEN X J, LIQ S, DUY F, et al. Transformation of forms of exogenous heavy metals in wetland soil at the Pearl River estuary [J].Journal of Ecology and Rural Environment, 2010, 26(3): 251-256. [35] 黄璜,南忠仁,刘晓文,等.干旱地区绿洲土壤中Cd、Pb、Zn形态分布与芹菜有效性[J].兰州大学学报(自然科学版),2010,46(1):53-58. DOI: 10.13885/j. issn. 0455-2059. 2010. 01. 015. HUANG H, NAN Z R, LIU X W, et al. Form distribution of Cd, Pb and Zn and their availability to celery in arid oasis soil [J]. Journal of Lanzhou University(Natural Sciences), 2010, 46(1): 53-58. [36] PERUZZIA E, MASCIANDAROA G, MACCIA C, et al. Heavy metal fractionation and organic matter stabilization in sewage sludge treatment wetlands [J]. Ecological Engineering, 2011, 37: 771-778.DOI:10.1016/j.ecoleng.2010.05.009. [37] XIAO R, BAI J H, LU Q Q, et al. Fractionation, transfer, and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in an estuary of China [J]. Science of the Total Environment, 2015, 517: 66-75. DOI: 10.1016/j.scitotenv.2015.02.052. [38] LIU J Y, SUN S Y. Total concentrations and different fractions of heavy metals in sewage sludge from Guangzhou, China [J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 2397-2407. DOI: 10.1016/S1003-6326(13)62747-8.
|