[1] 张根连, 范术丽, 宋美珍, 等. 植物蛋白质组学技术研究进展[J]. 生物技术通报, 2011(7): 26-30. DOI:10.13560/j.cnki.biotech.bull.1985.2011.07.031. ZHANG G L, FAN S L, SONG M Z, et al. Development of plant proteomics research technology[J]. Biotechnology Bulletin, 2011(7): 26-30. [2] NI W, ZHU L, SHA R, et al. Comparative iTRAQ proteomic profiling of susceptible and resistant apple cultivars infected by Alternaria alternata, apple pathotype[J]. Tree Genetics & Genomes, 2017, 13(1): 23. DOI: 10.1007/s11295-017-1104-5. [3] WANG B, HAJANO J U D, REN Y, et al. iTRAQ-based quantitative proteomics analysis of rice leaves infected by rice stripe virus, reveals several proteins involved in symptom formation[J]. Virology Journal, 2015, 12(1): 99. DOI: 10.1186/s12985-015-0328-y. [4] ZHONG Y, CHENG C Z, JIANG N H, et al. Comparative transcriptome and iTRAQ proteome analyses of Citrus root responses to Candidatus liberibacter asiaticus infection[J]. PloS One, 2015, 10(6): e0126973. DOI: 10.1371/journal.pone.0126973. [5] BERTACCINI A, DUDUK B. Phytoplasma and phytoplasma diseases: a review of recent research[J]. Phytopathologia Mediterranea, 2010, 48(3): 355-378. [6] YANG C Y, HUANG Y H, LIN C P, et al. MicroRNA396-Targeted SHORT VEGETATIVE PHASE is required to repress flowering and is related to the development of abnormal flower symptoms by the phyllody symptomsl effector[J]. Plant Physiol, 2015, 168(4): 1702-1716.DOI: 10.1104/pp.15.00307. [7] JI X L, GAI Y P, ZHENG C, et al. Comparative proteomic analysis provides new insights into mulberry dwarf responses in mulberry(Morus alba L.)[J]. Proteomics, 2009, 9(23): 5328-5339. DOI: 10.1002/pmic.200900012. [8] GAI Y P, HAN X J, LI Y Q, et al. Metabolomic analysis reveals the potential metabolites and pathogenesis involved in mulberry yellow dwarf disease[J]. Plant Cell & Environment, 2014, 37(6): 1474-1490. DOI: 10.1111/pce.12255. [9] HREN M, NIKOLIC P, ROTTER A, et al. ‘Bois noir' phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine[J]. BMC Genomics, 2009, 10(1): 460. DOI: 10.1186/1471-2164-10-460. [10] 范国强,赵改丽,翟晓巧,等.硫酸二甲酯对毛泡桐丛枝病幼苗植原体及SSR扩增位点的影响[J].南京林业大学学报(自然科学版),2012,36(3):5-8.DOI:10.3969/j.jssn.1000-2006.2012.03.002. FAN G Q,ZHAO G L,ZHAI X Q,et al. Effect of dimethyl sulphate on phytoplasma of Paulownia tomentosa seedling infected by witches' broom and its DNA loci at SSR level[J].Journal of Nanjing Forestry University(Natural Sciences Edition),2012,36(3):5-8. [11] 曹喜兵, 赵振利, 范国强, 等. 甲基磺酸甲酯对毛泡桐丛枝病苗DNA甲基化的影响[J]. 林业科学, 2014, 50(3): 99-108. DOI:10.11707/j.1001-7488.20140314. CAO X B, ZHAO Z L, FAN G Q. Effect of methyl methanesulphonate on DNA methylation of witches' broom seedlings of Paulownia tomentosa[J]. Scientia Silvae Sinicae, 2014, 50(3): 99-108. [12] 赵改丽, 赵振利, 范国强, 等. 硫酸二甲酯对白花泡桐丛枝病幼苗形态变化及DNA碱基序列的影响[J]. 河南农业大学学报, 2011, 45(3): 287-291. DOI: 10.16445/j.cnki.1000-2340.2011.03.009. ZHAO G L, ZHAO Z L, FAN G Q, et al. Effects of dimethyl sulphonate on the morphological changes of Paulownia fortunei seedlings with witches' broom and their DNA base sequences[J]. Journal of Henan Agricultural University, 2011, 45(3): 287-291. [13] FAN G, CAO X, ZHAO Z, et al. Transcriptome analysis of the genes related to the morphological changes of Paulownia tomentosa, plantlets infected with phytoplasma[J]. Acta Physiologiae Plantarum, 2015, 37(10): 1-12. DOI: 10.1007/s11738-015-1948-y. [14] 范国强, 张胜, 翟晓巧, 等. 抗生素对泡桐丛枝病植原体和发病相关蛋白质的影响[J]. 林业科学, 2007, 43(3): 138-142. DOI:10.11707/j.1001-7488.20070324. FAN G Q, ZHANG S, ZHAI X Q, et al. Effects of antibiotics on the ‘Paulownia witches' broom phytoplasmas and pathogenic protein related to witches' broom symptom[J]. Scientia Silvae Sinicae, 2007, 43(3): 138-142. [15] WANG Z, LIU W, FAN G, et al. Quantitative proteome-level analysis of ‘Paulownia witches' broom disease with methylmethane sulfonate assistance reveals diverse metabolic changes during the infection and recovery processes[J]. Peerj, 2017, 5: e3495.DOI: 10.7717/peerj.3495. [16] MONAVARFESHANI A, MIRZAEI M, SARHADI E, et al. Shotgun proteomic analysis of the Mexican lime tree infected with “Candidatus Phytoplasma aurantifolia”[J]. Journal of Proteome Research, 2013, 12(2): 785-95. DOI: 10.1021/pr300865t. [17] LIU Z, ZHAO J, LIU M. Photosynthetic responses to phytoplasma infection in Chinese jujube[J]. Plant Physiology & Biochemistry, 2016, 105: 12-20. DOI: 10.1016/j.plaphy.2016.04.003. [18] 张玲艳, 王宏权. Ca2+-CaM信号系统与植物的抗病性[J]. 热带农业科技, 2014, 37(1): 40-43. DOI:10.16005/j.cnki.tast.2014.01.002 ZHANG L Y, WANG H Q. Ca2+-CaM signal transduction pathway and plant disease resistance[J]. Tropical Agricultural Science & Technology, 2014, 37(1): 40-43. [19] 刘维. 番茄钙调蛋白和类钙调蛋白的抗病调控功能分析[D]. 杭州:浙江大学, 2015. LIU W. Functional analyses of tomato calmodulin and calmodiilin-like genes in disease resistance[D]. Hangzhou: Zhejiang University, 2015. [20] HYONGWOO C, DONGHYUK L, BYUNGKOOK H. The pepper calmodulin gene CaCaM1 is involved in reactive oxygen species and nitric oxide generation required for cell death and the defense response[J]. Molecular Plant-Microbe Interactions, 2009, 22(11): 1389-1400. [21] 张振乾, 肖钢, 官春云, 等. 利用转录组及iTRAQ技术筛选高油酸油菜抗病相关基因[J]. 华北农学报, 2015, 30(5): 16-24. ZHANG Z Q, XIAO G, GUAN C Y, et al.The study of high oleic acid rapeseed disease resistance related genes by transcriptome and iTRAQ analysis[J]. Acta Agriculture Boreali-sinica, 2015, 30(5): 16-24. [22] CHEN W, LI Y, WANG Q, et al. Comparativegenome analysis of wheat blue dwarf phytoplasma, an obligate pathogen that causes wheat blue dwarf disease in China[J]. PLoS One, 2014, 9(5): e96436. DOI: 10.1371/journal.pone.0096436. [23] PEROZICH J, NICHOLAS H, WANG B C, Relationships within the aldehyde dehydrogenase extended family[J]. Protein Science,1999, 8(1):137-146. DOI: 10.1110/ps.8.1.137. |