[1] NELSON D, WERCK-REICHHART D. A P450-centric view of plant evolution[J]. Plant Journal,2011,66(1):194-211.DOI:10.1111/j.1365-313X.2011.04529.x. [2] NELSON D R. Progress in tracing the evolutionary paths of cytochrome P450[J]. Biochimica et Biophysica Acta,2011,1814(1):14-18. DOI:10.1016/j.bbapap.2010.08.008. [3] HAN J Y, HWANG H S, CHOI S W, et al. Cytochrome P450 CYP716A53v2 catalyzes the formation of protopanaxatriol from protopanaxadiol during ginsenoside biosynthesis in Panax ginseng[J]. Plant and Cell Physiology,2012,53(9):1535-1545. DOI:10.1093/pcp/pcs106. [4] HAN J Y, KIM H J, KOWN Y S, et al. The cytP450 enzyme CYP716A47 catalyzes the formation of protopanaxadiol from dammarenediol-II during ginsenoside biosynthesis in Panax ginseng[J]. Plant & Cell Physiology,2011,52(12):2062-2073. DOI:10.1093/pcp/pcr150. [5] PAGE V, SCHWITZGUEBEL J P. Metabolism of sulphonated anthraquinones in rhubarb, maize and celery: the role of cytochromes P450 and peroxidases[J]. Plant Cell Reports, 2009,28(11):1725-1735. DOI:10.1007/s00299-009-0772-5. [6] BOACHON B, JUNKER R R, MIESCH L, et al. CYP76C1(Cytochrome P450)-mediated linalool metabolism and the formation of volatile and soluble Linalool oxides in Arabidopsis flowers: a strategy for defense against floral antagonists[J]. Plant Cell, 2015,27: 2972-2990. DOI:10.1105/tpc.15.00399. [7] LI H, PINOT F, SAUVEPLANE V, et al. Cytochrome P450 family member CYP704B2 catalyzes the ω-hydroxylation of fatty acids and is required for anther cutin biosynthesis and pollen exine formation in rice[J]. Plant Cell,2010,22(1):173-190. DOI:10.1105/tpc.109.070326. [8] YAMAGUCHI S. Gibberellin metabolism and its regulation[J]. Annual Review of Plant Biology, 2008,59:225-251.DOI:10.1146/annurev.arplant.59.032607.092804. [9] PAK H, YU-LING L I, KIM H, et al. cDNA-ampliifed fragment length polymorphism analysis reveals differential gene expression induced by exogenous MeJA and GA3 in oilseed rape(Brassica napus L.)fowers[J]. Journal of Integrative Agriculture, 2017, 16(1):47-56. DOI:10.1016/S2095-3119(16)61407-7. [10] LI R, SCHUMAN M C, WANG Y, et al. Jasmonate signaling makes flowers attractive to pollinators and repellant to florivores in nature[J]. Journal of Integrative Plant Biology, 2018, 60(3):190-194. DOI:10.1111/jipb.12607. [11] MOSES T, POLLIER J, SHEN Q, et al. OSC2 and CYP716A14v2 catalyze the biosynthesis of triterpenoidsfor the cuticle of aerial organs of Artemisia annua[J]. Plant Cell,2015,27(1):286-301. DOI:10.1105/tpc.114.134486. [12] TAMURA K, FUKAO Y, HATSUGAI N, et al. Nup82 functions redundantly with Nup136 in a salicylic acid-dependent defense response of Arabidopsis thaliana[J]. Nucleus, 2017,8:301-311. DOI:10.1080/19491934.2017.1279774. [13] MARTINEZMEDINA A, FERNANDEZ I, LOK G B, et al. Shifting from priming of salicylic acid to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita[J]. New Phytologist, 2017, 213(3):1363-1377. DOI:10.1111/nph.14251. [14] DING Y, SUN T, AO K, et al. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity[J]. Cell, 2018, 173(6): 1454-1467. DOI:10.1016/j.cell.2018.03.044. [15] SUSSMILCH F C, ATALLAH N M, BRODRIBB T J, et al. Abscisic acid(ABA)and key proteins in its perception and signaling pathways are ancient, but their roles have changed through time[J]. Plant Signaling & Behavior, 2017, 12(9):e1365210. DOI:10.1080/15592324.2017.1365210. [16] VERSLUES P E. Rapid quantification of abscisic acid by GC-MS/MS for studies of abiotic stress response[J]. Methods Mol Biol, 2017, 1631: 325-335. DOI: 10.1007/978-1.4939-7136-7.21. [17] XI W, LIU C, HOU X, et al.MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis[J]. Plant Cell, 2010, 22(6):1733-1748. DOI:10.1105/tpc.109.073072. [18] CHOI Y, LEE Y, HWANG J U. Arabidopsis ROP9 and ROP10 GTPases differentially regulate auxin and ABA responses[J]. Journal of Plant Biology, 2014, 57(4):245-254.DOI:10.1007/s12374-014-0029-x. [19] KIM S H, LIM S R, HONG S J, et al. Effect of ethephon as an ethylene-releasing compound on the metabolic profile of Chlorella vulgaris[J]. J Agric Food Chem, 2016, 64(23):4807-4816. DOI:10.1021/acs.jafc.6b00541. [20] YAO D, HUO X, ZENDA T, et al. Effects of ethephon on DNA methylation and gene expressions associated with shortened internodes in maize[J]. Biotechnology & Biotechnological Equipment, 2017,16:30-40.DOI:10.1080/13102818.2017.1386591. [21] CHEN B, MA J, XU Z, et al. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination[J]. Journal of Integrative Plant Biology, 2016, 58(10):859-869.DOI:10.1111/jipb.12479. [22] 叶银英,何道伟,叶文才,等.23-羟基桦木酸体外和体内抗黑色素瘤作用的研究[J]. 中国肿瘤临床与康复,2000(1):7-9. YE Y Y, HE D W, YE W C, et al. The study of 23-hydroxyl betulinic acid against melanoma in vivo and in vitro[J].Chinese Journal of Clinical Oncology and Rehabilitation, 2000(1): 7-9. [23] 李薇,李岩,金雄杰.白桦三萜类物质的抗肿瘤作用及其对免疫功能的增强效应[J].中国免疫学杂志,2001,6(9):485-490. LI W, LI Y, JIN X J. Antitumor activity and immunoregulatory effect of triterpenes isolated from Betula platyphylla[J]. Chinese Journal of Immunology, 2001,6(9): 485-490. [24] 李岩,金雄杰,谢湘林,等. 白桦三萜类物质抗黑色素瘤B16、S180肉瘤作用及其机制的实验研究[J].中国药理学通报,2000,16(3):279-281. LI Y, JIN X J, XIE X L, et al. Antitumor activity and mechanism of tritrepenes isolated form Betula platyphylla on melanoma B16 and sarcoma 180[J]. Chinese Journal of Pharmacology, 2000,16(3): 279-281. [25] FUJIOKA T, KASHIWADA Y, KILKUSKIE R E, et al. Anti-AIDS agents,11.Betulinic acid and platanic acid as anti-HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids[J]. Journal of Natural Products, 1994,57(2):243-247. [26] FULDA S, JEREMIAS I, STEINER H H, et al. Betulinc acid: a new cytotoxic agent against malignant brain-tumor cells Cancer[J].International Journal of Cancer,1999, 82(3):435-441. DOI: 10.1002/(SICI)1097-0215(19990730)82:3<435::AID-IJC18>3.0.CO; 2-1. [27] FALAMAS A, PINZARU C S, DEHELEAN C A, et al. Betulin and its natural resource as potential anticancer drug candidate seen by FT-Raman and FT-IR spectroscopy[J]. Raman Spectroscopy, 2011, 42(1): 97-107. DOI:10.1002/jrc2658. [28] 范桂枝,詹亚光.白桦酯醇的研究进展[J].中草药,2008,39(10):1591-1594. FAN G Z, ZHAN Y G.Advances in studies on betulin[J]. Chinese Herbal Medicine, 2008,39(10): 1591-1594. [29] 孙华.齐墩果酸类化合物的结构改造及抗癌活性研究[D].沈阳:沈阳药科大学,2007. SUN H. Studies on synthesis of derivatives of oleanolic acids and their anti-tumor activity[D]. Shenyang: Shenyang Pharmaceutical University, 2007. [30] 王倩.白桦树皮三萜类物质的分布规律[D].哈尔滨:东北林业大学, 2008. WANG Q. Study on the distribution of triterpenoids in white birch bark [D]. Harbin: Northeast Forestry University, 2008. [31] 梁甜.白桦OSC新基因的克隆、RNAi载体构建及遗传转化初步研究[D].哈尔滨:东北林业大学, 2015. LIANG T. Cloe of OSC new gee, structure of RNAi carrier and study history genetic preliminarilyin Betida platyphylta Suk[D]. Harbin: Northeast Forestry University, 2015. [32] GHOSH S. Triterpene structural diversification by plant cytochrome P450 enzymes[J]. Frontiers in Plant Science, 2017, 8:1-15. DOI:10.3389/fpls.2017.018886. [33] ARIMURA G, GARMS S, MAFFEI M, et al. Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling[J]. Planta, 2008, 227(2): 453-464.DOI:10.1007/s00425-007-0631-y. [34] 牛云云. 三七、西洋参中三萜皂苷合成关键酶基因的克隆及表达模式分析[D].北京:北京协和医学院,2013. NIU Y Y. Cloning and expression analysis of the key genes involved in triterpene saponin biosynthesis in Panax notoginseng and Panax quinquefolium[D].Beijing: Peking Union Medical College,2013. [35] CHANG C, KWOK S F, BLEECKER A B, et al. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators[J]. Science, 1993, 262(5133):539-544.DOI:10.1126/science.8211181. [36] ZHANG M Y, WANG S Y, YIN J, et al. Molecular cloning and promoter analysis of squalene synthase and squalene epoxidase genes from Betula platyphylla Suk[J]. Protoplasma,2016, 253,(5):1347-1363.DOI:10.1007/s00709-015-0893-3. [37] YIN J, LI X, ZHAN Y G, et al. Cloning and expression of BpMYC4 and BpbHLH9 genes and the role of BpbHLH9 in triterpenoid synthesis in birch[J]. BMC Plant Biology, 2017,17(1):214.DOI:10.1186/s12870-071-1150-z. [38] YU Z X, LI J X, YANG C Q, et al. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L.[J]. Molecular Plant, 2012, 5(2): 353-365.DOI:10.1093/mp/ssr087. [39] VODENEEV V, MUDRILOV M, AKINCHITS E, et al. Parameters of electrical signals and photosynthetic responses induced by them in pea seedlings depend on the nature of stimulus[J]. Functional Plant Biology, 2017,45(2):160-170.DOI:10.1071/FP16342.
|