南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (5): 231-238.doi: 10.3969/j.issn.1000-2006.201806011

• 研究论文 • 上一篇    下一篇

基于PCA-BP神经网络的PM2.5季节性预测方法研究

张怡文1(), 郭傲东2, 吴海龙1, 袁宏武1, 董云春1   

  1. 1.安徽新华学院信息工程学院, 安徽 合肥 230088
    2.重庆邮电大学计算机科学与技术学院,重庆 400065
  • 收稿日期:2018-06-30 修回日期:2020-05-14 出版日期:2020-10-30 发布日期:2020-10-30
  • 基金资助:
    安徽省高校优秀青年人才支持计划项目(gxyqZD2018087);安徽省高校自然科学重点项目(KJ2019A0877)

Seasonal prediction of PM2.5 based on the PCA-BP neural network

ZHANG Yiwen1(), GUO Aodong2, WU Hailong1, YUAN Hongwu1, DONG Yunchun1   

  1. 1. College of Information Engineering, Anhui Xinhua University, Hefei 230088,China
    2. College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065,China
  • Received:2018-06-30 Revised:2020-05-14 Online:2020-10-30 Published:2020-10-30

摘要:

【目的】分季节预测PM2.5浓度值,利用PCA方法对数据进行降维,分析季节及气象因素对PM2.5的影响,在提高预测准确率的同时降低时间复杂度。【方法】以合肥市2014—2017年的PM10、SO2、CO2、CO、O3浓度值,以及同时段的气象因素值,对PM2.5浓度进行预测。数据分析中发现PM2.5在不同季节浓度差异较大,故本研究选择分季节进行预测;为了提高预测准确率,加入如风力、温度、湿度、气压等气象因素进行预测,同时采用主成分分析(PCA)的方法进行数据降维,将降维后的数据再输入BP神经网络模型进行预测。【结果】实验采用3组实验进行对比:5种污染物指标(PM2.5-5)预测PM2.5、加入气象因素的综合12项指标(PM2.5-12)预测PM2.5、对综合指标进行PCA处理后的(PM2.5-PCA)预测PM2.5。实验结果表明:4个季节的PM2.5浓度值有较大变化,均方根误差(RMSE)的差值较大;采用PM2.5-PCA的方法,在任何季节的RMSE均有降低,相关系数(r)均有所提高。【结论】PM2.5浓度具有季节性特征,采用季节性预测方法可以提高预测准确率;同时采用PCA方法进行降维,可以在保证准确率的同时降低预测时间复杂度。

关键词: PM2.5, 神经网络, 预测, 主成分分析

Abstract:

【Objective】 We predict the concentration of PM2.5 during different seasons and use the Principal Component Analysis (PCA) method to reduce the dimensionality of the data, while also improving the accuracy of the prediction and reducing the time complexity, to serve as a reference for travel by people and government decision-making. 【Method】 The PM2.5 concentration was forecast based on the values of PM10, SO2, CO2, CO and O3 concentration in Hefei from 2014 to 2017, and the meteorological factors during the same period. The data analysis found that the concentration of PM2.5 varies greatly across seasons; therefore, this study is focused on the forecasting during different seasons. To improve the accuracy of forecasting, influencing meteorological factors such as wind, temperature, humidity and air pressure were added to the forecasting. The PCA method was used for data dimensionality reduction, and then, the data were input into the BP neural network model for prediction. 【Result】 The experiment used three groups of assessments for comparison: five types of pollutant indicators to predict PM2.5 (PM2.5-5), addition of twelve comprehensive indicators of meteorological factors to predict PM2.5 (PM2.5-12), and use of comprehensive indicators which were processed by PCA (PM2.5-PCA) to predict PM2.5. The experimental results showed that the PM2.5 concentration in the four seasons had large changes, and the difference in Root Mean Square Error(RMSE) is large, when using the PM2.5-PCA method. We found that if the RMSE is reduced in any season, the correlation coefficient (r) value is increased. 【Conclusion】 The PM2.5 concentration value has seasonal characteristics, and the seasonal prediction method can improve prediction accuracy. Moreover, adopting the PCA method to reduce data dimensionality can ensure accuracy and decrease the time complexity at the same time.

Key words: PM2.5, neural networks, prediction, principal component analysis(PCA)

中图分类号: