[1] DAT J, VANDENABEELE S, VRANOVÃ E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cellular Molecular Life Sciences, 2000, 57(5): 779-795. DOI:10.1007/s000180050041. [2] CORPAS F J, SEVILLA F. Salt-induced oxidative stress mediated by activated oxygen species in pea leafmitochondria[J]. Physiologia Plantarum, 2010, 89(1): 103-110. DOI: 10.1111/j.1399-3054. 1993. tb01792.x. [3] CIRCU M L, AW T Y. Reactive oxygen species, cellular redox systems, and apoptosis[J]. Free Radical Biology and Medicine, 2010, 48(6): 749-762. DOI: 10.1016/j.freeradbiomed.2009.12.022. [4] LIM Y S, CHA M K, KIM H K, et al. Removals of hydrogen peroxide and hydroxyl radical by thiol-specific antioxidant protein as a possible role in vivo[J]. Biochemical Biophysical Research Communications, 1993, 192(1): 273-280. DOI: 10.1006/bbrc.1993.1410. [5] BAIER M, DIETZ K J. Primary structure and expression of plant homologues of animal and fungal thioredoxin-dependent peroxide reductases and bacterial alkyl hydroperoxide reductases[J]. Plant Molecular Biology, 1996, 31(3): 553-564. DOI: 10.1007/BF00042228. [6] BAIER M, DIETZ K J. The two-Cys peroxiredoxin Bas1: insight in a new family of plant peroxidases[J]. Plant Peroxidases, Biochemistry and Physiology, 1996: 204-209. [7] BAIER M, DIETZ K J. The plant 2-Cys peroxiredoxin BAS1 is a nuclear-encoded chloroplast protein: its expressional regulation, phylogenetic origin, and implications for its specific physiological function in plants[J]. The Plant Journal, 1997, 12(1): 179-190. DOI: 10.1046/j.1365-313X.1997.12010179.x. [8] CHEONG N E, CHOI Y O, LEE K O, et al. Molecular cloning, expression, and functional characterization of a 2Cys-peroxiredoxin in chinese cabbage[J]. Plant Molecular Biology, 1999, 40(5): 825-834. DOI: 10.1023/A:1006271823973. [9] BERBERICH T, UEBLER M, FEIERABEND J. Cloning of a cDNA encoding a thioredoxin peroxidase(TPx)homolog from winter rye(Secale cereale L)(Accession No. AF076920)(PGR98-167)[J]. Plant Physiology, 1998, 118: 711. DOI:10.1097/00003226-200204000-00006. [10] HORLING F, BAIER M, DIETZ K J. Redox-regulation of the expression of the peroxide-detoxifying chloroplast 2-cys peroxiredoxin in the liverwort Riccia fluitans[J]. Planta, 2001, 214(2): 304-313. DOI: 10.1007/s004250100623. [11] VEAL E A, FINDLAY V J, DAY A M, et al. A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase[J]. Molecular Cell, 2004, 15(1): 129-139. DOI: 10.1016/j.molcel.2004.06.021. [12] BARFORD D. The role of cysteine residues as redox-sensitive regulatory switches[J]. Current Opinion in Structural Biology, 2004, 14(6): 679-686. DOI: 10.1016/j.sbi.2004.09.012. [13] YANG K S, KANG S W, WOO H A, et al. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine-sulfinic acid[J]. Journal of Biological Chemistry, 2002, 277(41): 38029-38036. DOI: 10.1074/jbc.M206626200. [14] HIROTSU S, ABE Y, OKADA K, et al. Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 kDa/proliferation-associated gene product[J]. Proceedings of the National Academy of Sciences, 1999, 96(22): 12333-12338. DOI: 10.1073/pnas.96.22.12333. [15] MOON J C, HAH Y S, KIM W Y, et al. Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death[J]. Journal of Biological Chemistry, 2005, 280(31): 28775-28784. DOI: 10.1074/jbc.M505362200. [16] JANG H H, LEE K O, CHI Y H, et al. Two enzymes in one: two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function[J]. Cell, 2004, 117(5): 625-635. DOI: 10.1016/j.cell.2004.05.002. [17] HOSSAIN M S, ELSAYED A I, MOORE M, et al. Redox and reactive oxygen species network in acclimation for salinity tolerance in sugar beet[J]. Journal of Experimental Botany, 2017, 68(5): 1283-1298. DOI: 10.1093/jxb/erx019. [18] ZHANG H, XU N, LI X, et al. Overexpression of 2-Cys Prx increased salt tolerance of photosystem II in tobacco[J]. International Journal of Agriculture Biology, 2017, 19(4):1-42. DOI: 10.17957/IJAB/15.0348. [19] KIM K H, ALAM I, LEE K W, et al. Enhanced tolerance of transgenic tall fescue plants overexpressing 2-Cys peroxiredoxin against methyl viologen and heat stresses[J]. Biotechnology Letters, 2010, 32(4): 571-576. DOI: 10.1007/s10529-009-0185-0. [20] GAO C, ZHANG K, YANG G, et al. Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and exogenous abscisic acid(ABA)[J]. International Journal of Molecular Sciences, 2012, 13(3): 3751-3764. DOI: 10.3390/ijms13033751. [21] 宁坤,宋鑫,李慧玉. 柽柳GF14基因的克隆与表达分析[J]. 南京林业大学学报(自然科学版), 2016, 40(2): 33-40. DOI: 10. 3969/j. issn.1000-2006. 2016. 02. 006. NING K, SONG X, LI H Y.Cloning and expression analysis of ThGF14 gene in Tamarix hispida[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2016, 40(2): 33-40. [22] LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. DOI: 10.1006/meth.2001.1262. [23] 张凯敏,王玉成,杨桂燕,等. 柽柳ThPR1基因的克隆与表达分析[J]. 南京林业大学学报(自然科学版), 2013, 37(2):45-49. DOI: 10.3969/j.issn.1000-2006.2013.02.008. ZHANG K M, WANG Y C, YANG G Y, et al. Clone and expression analysis of ThPRl gene in Tamarix hispida[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(2): 45-49. [24] WANG Q J, SUN H, DONG Q L,et al. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants[J]. Plant Biotechnology Journal, 2016, 14(10): 1986-1997. DOI: 10.1111/pbi.12556. [25] LI X, KIM Y B, KIM Y, et al. Differential stress-response expression of two flavonol synthase genes and accumulation of flavonols in tartary buckwheat[J]. Journal of Plant Physiology, 2013,170(18):1630-1636. DOI: 10.1016/j.jplph.2013.06.010. [26] HAN Y Y, LI A X, LI F, et al. Characterization of a wheat(Triticum aestivum L.)expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation[J]. Plant Physiology and Biochemistry, 2012, 54, 49-58. DOI: 10.1016/j.plaphy.2012.02.007. [27] NAKAMURA Y, TOLBERT N E. Serine: glyoxylate, alanine: glyoxylate, and glutamate: glyoxylate aminotransferase reactions in peroxisomes from spinach leaves[J]. Journal of Biological Chemistry, 1983, 258(12): 7631-7638. [28] REHFELD D W, TOLBERT N E. Aminotransferases in peroxisomes from spinach leaves[J]. Journal of Biological Chemistry, 1972, 247(15): 4803-4811. DOI: 10.1007/BF01539064. [29] HUSIC D W, HUSIC H D, TOLBERT N E, et al. The oxidative photosynthetic carbon cycle or C2 cycle[J]. Critical Reviews in Plant Sciences, 1987, 5(1): 45-100. DOI: 10.1080/07352688709382234. [30] SOMERVILLE C R, OGREN W L. Genetic modification of photorespiration[J]. Trends in Biochemical Sciences, 1982, 7(5): 171-174. DOI: 10.1016/0968-0004(82)90130-X. [31] 金怡,刘合芹,汪得凯,等. 植物光呼吸分子机制研究进展[J]. 中国农学通报, 2011, 27(3): 232-236. DOI: 1000-6850(2011)27:3<232:ZWGHXF>2.0.TX; 2-N. JIN Y, LIU H Q, WANG D K, et al. The progress of molecular mechanisms of photorespiration in plants[J]. Chinese Agricultural Science Bulletin, 2011, 27(3): 232-236. [32] KOZAKI A, TAKEBA G. Photorespiration protects C3 plants from photooxidation[J]. Nature, 1996, 384(6609): 557-560. DOI: 10.1038/384557a0. [33] FOYER C H, NOCTOR G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications[J]. Antioxidants Redox Signaling, 2009, 11(4): 861-905. DOI: 10.1089/ars.2008.2177. [34] OSMOND C B, GRACE S C.Perspectives on photoinhibition and photorespiration in the field: quintessential inefficiencies of the light and dark reactions of photosynthesis[J]. Journal of Experimental Botany, 1995: 1351-1362. DOI: 10.1093/jxb/46.special_issue.1351. [35] CHUNG E, KIM K M, HEO J E, et al. Molecular characterization of mungbean peroxisomal alanine glyoxylate aminotransferase gene induced by low temperature stress[J]. Genes Genomics, 2009, 31(1): 11-18. DOI: 10.1007/BF03191133.
|