南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (04): 169-177.doi: 10.3969/j.issn.1000-2006.201806030
宋金凤1,汝佳鑫1,张红光2,曹 楷3,崔晓阳1*
出版日期:
2019-07-22
发布日期:
2019-07-22
基金资助:
SONG Jinfeng1, RU Jiaxin1, ZHANG Hongguang2, CAO Kai3, CUI Xiaoyang1*
Online:
2019-07-22
Published:
2019-07-22
摘要: 岩石矿物风化是地球表面发生的最重要化学现象之一,其中生物风化备受关注。对地衣及地衣真菌分泌的地衣酸类物质(简称地衣酸)在岩石矿物风化中的作用及机制进行综合述评,从而为科学评价地衣和地衣酸在森林(特别是寒温带)生态系统中的作用提供理论依据。地衣通过物理和化学方式显著诱导并加速岩石矿物的风化进程,即同时具有生物物理风化和生物化学风化两方面作用,而后者更为重要。在地衣诱导的岩石矿物风化过程中,地衣依其共生真菌/藻类特异性分泌的地衣酸起主导作用,无论是在野外还是实验室条件下,地衣酸都是岩石矿物生物风化的主要作用力。地衣酸对岩石矿物的风化机制包括质子促进效应和络合促进效应两方面,特别是地衣酸能与岩石矿物中的盐基离子形成可溶性螯合物,从而引起岩石矿物的强烈溶蚀。
中图分类号:
宋金凤,汝佳鑫,张红光,等. 地衣和地衣酸与岩石矿物风化及其机制研究进展[J]. 南京林业大学学报(自然科学版), 2019, 43(04): 169-177.
SONG Jinfeng, RU Jiaxin, ZHANG Hongguang, CAO Kai, CUI Xiaoyang. Research progress on lichens, lichenic acids, rock and mineral weathering and its mechanisms[J].Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(04): 169-177.DOI: 10.3969/j.issn.1000-2006.201806030.
[1] 吴秋芳, 胡海波, 张鑫. 黑曲霉及其代谢产物对花岗岩风化作用的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(1): 81-88. DOI:10.3969/j.issn.1000-2006.201610049. WU Q F, HU H B, ZHANG X. Effect of Aspergillus niger and its metabolites on weathering of granite[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 42(1): 81-88. [2] 严君, 韩晓增, 王树起, 等. 不同形态氮素对种植大豆土壤中微生物数量及酶活性的影响[J]. 植物营养与肥料学报, 2010, 16(2): 341-347. YAN J, HAN X Z, WANG S Q, et al. Effects of different nitrogen forms on microbial quantity and enzymes activities in soybean field[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 341-347. [3] PAYETTE S, DELWAIDE A. Tamm review: the North-American lichen woodland[J]. Forest Ecology and Management, 2018, 417: 167-183. DOI:10.1016/j.foreco.2018.02.043. [4] MARQUES J, GONCALVES J, OLIVEIRA C, et al. On the dual nature of lichen-induced rock surface weathering in contrasting micro-environments[J]. Ecology, 2016, 97(10): 2844-2857. DOI:10.1002/ecy.1525. [5] RIVAS T, POZO-ANTONIO J S, LóPEZ DE SILANES M E, et al. Laser versus scalpel cleaning of crustose lichens on granite[J]. Applied Surface Science, 2018, 440: 467-476. DOI:10.1016/j.apsusc.2018.01.167. [6] HOFFLAND E, KUYPER T W, WALLANDER H, et al. The role of Fungi in weathering[J]. Frontiers in Ecology and the Environment, 2004, 2(5): 258. DOI:10.2307/3868266 [7] FAVERO-LONGO S E, GIRLANDA M, HONEGGER R, et al. Interactions of sterile-cultured lichen-forming ascomycetes with asbestos fibres[J]. Mycological Research, 2007, 111(4): 473-481. DOI:10.1016/j.mycres.2007.01.013. [8] SCARCIGLIA F, SAPORITO N, LA RUSSA M F, et al. Role of lichens in weathering of granodiorite in the Sila uplands(Calabria, southern Italy)[J]. Sedimentary Geology, 2012, 280: 119-134. DOI:10.1016/j.sedgeo.2012.05.018. [9] LáZARO R, CANTóN Y, SOLé-BENET A, et al. The influence of competition between lichen colonization and erosion on the evolution of soil surfaces in the Tabernas badlands(SE Spain)and its landscape effects[J]. Geomorphology, 2008, 102(2): 252-266. DOI:10.1016/j.geomorph.2008.05.005. [10] 杨琳璐, 王中生, 周灵燕, 等. 苔藓和地衣对环境变化的响应和指示作用[J]. 南京林业大学学报(自然科学版), 2012, 36(3): 137-143. DOI:10.3969/j.issn.1000-2006.2012.03.028. YANG L L, WANG Z S, ZHOU L Y, et al. Response and bioindicator of bryophyte and lichen as cryptogamae plants to environmental change[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2012, 36(3): 137-143. [11] 李莎, 李福春, 程良娟. 生物风化作用研究进展[J]. 矿产与地质, 2006, 20(6): 577-582. DOI:10.3969/j.issn.1001-5663.2006.06.001. LI S, LI F C, CHENG L J. Recent development in bio-weathering research[J]. Mineral Resources and Geology, 2006, 20(6): 577-582. [12] 范海兰, 谢安强, 申超, 等. 短葶山麦冬内生真菌分离鉴定及抗氧化活性[J]. 北华大学学报(自然科学版), 2017, 18(1): 106-109. DOI:10.11713/j.issn.1009-4822.2017.01.025. FAN H L, XIE A Q, SHEN C, et al. Isolation, identification and oxidant activity of endophytic Fungi from Liriope muscari (Decne.)bailey[J]. Journal of Beihua University(Natural Science), 2017, 18(1): 106-109. [12] FISK M R, POPA R, MASON O U, et al. Iron-magnesium silicate bioweathering on earth(and mars?)[J]. Astrobiology, 2006, 6(1): 48-68. DOI:10.1089/ast.2006.6.48. [14] HOFFLAND E, GIESLER R, VAN BREEMEN N, et al. Feldspar tunneling by Fungi along natural productivity gradients[J]. Ecosystems, 2003, 6(8): 739-746. DOI:10.1007/s10021-003-0191-3. [15] VINGIANI S, TERRIBILE F, ADAMO P. Weathering and particle entrapment at the rock-lichen interface in Italian volcanic environments[J]. Geoderma, 2013, 207/208: 244-255. DOI:10.1016/j.geoderma.2013.05.015. [16] BEHERA B C, VERMA N, SONONE A, et al. Experimental studies on the growth and usnic acid production in “lichen” Usnea ghattensis in vitro[J]. Microbiological Research, 2006, 161(3): 232-237. DOI:10.1016/j.micres.2005.08.006. [17] KOCH N M, DE AZEVEDO MARTINS S M, LUCHETA F, et al. Functional diversity and traits assembly patterns of lichens as indicators of successional stages in a tropical rainforest[J]. Ecological Indicators, 2013, 34: 22-30. DOI:10.1016/j.ecolind.2013.04.012. [18] VANNINI A, CONTARDO T, PAOLI L C, et al. Application of commercial biocides to lichens: Does a physiological recovery occur over time?[J]. International Biodeterioration & Biodegradation, 2018, 129: 189-194. DOI:10.1016/j.ibiod.2018.02.010. [19] 陈杰, 龚子同, HANS P B, 等. 地衣对建筑物的生物破坏作用[J]. 环境污染治理技术与设备, 2000, 1(1): 65-74. DOI:10.3969/j.issn.1673-9108.2000.01.012. CHEN J, GONG Z T, HANS P B, et al. Biodeterioration of constructions induced by lichens[J]. Techniques and Equipments for Environmental Pollution Control, 2000, 1(1): 65-74. DOI:10.3969/j.issn.1673-9108.2000.01.012. [20] JACKSON T A. Weathering, secondary mineral genesis, and soil formation caused by lichens and mosses growing on granitic gneiss in a boreal forest environment[J]. Geoderma, 2015, 251/252: 78-91. DOI:10.1016/j.geoderma.2015.03.012 [21] ZAMBELL C B, ADAMS J M, GORRING M L, et al. Effect of lichen colonization on chemical weathering of hornblende granite as estimated by aqueous elemental flux[J]. Chemical Geology, 2012, 291: 166-174. DOI:10.1016/j.chemgeo.2011.10.009. [22] GADD G M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by Fungi, bioweathering and bioremediation[J]. Mycological Research, 2007, 111(1): 3-49. DOI:10.1016/j.mycres.2006.12.001. [23] MCILROY DE LA ROSA J P, WARKE P A, SMITH B J. The effects of lichen cover upon the rate of solutional weathering of limestone[J]. Geomorphology, 2014, 220: 81-92. DOI:10.1016/j.geomorph.2014.05.030. [24] 孙向阳. 土壤学[M]. 北京: 中国林业出版社, 2006. SUN X Y. Soil science[M]. Beijing: China Forestry Publishing House, 2006. [25] CHEN J, GONG Z T. Role of lichens in weathering and soil-forming processes in fildes peninsula, Antarctic[J]. Pedosphere, 1995, 5: 305-314. [26] VARADACHARI C, BARMAN A K, GHOSH K. Weathering of silicate minerals by organic acids II. Nature of residual products[J]. Geoderma, 1994, 61(3/4): 251-268. DOI:10.1016/0016-7061(94)90052-3. [27] WIERZCHOS J. Morphological and chemical features of bioweathered granitic biotite induced by lichen activity[J]. Clays and Clay Minerals, 1996, 44(5): 652-657. DOI:10.1346/ccmn.1996.0440507. [28] STRETCH R C, VILES H A. The nature and rate of weathering by lichens on lava flows on Lanzarote[J]. Geomorphology, 2002, 47(1): 87-94. DOI:10.1016/s0169-555x(02)00143-5. [29] 李波, 林中文, 孙汉董. 四种国产地衣的化学成分[J]. 云南植物研究, 1991,13(1): 81-84. LI B, LIN Z W, SUN H D. The chemical constituents of four lichens from China[J]. Acta Botanica Yunnanica, 1991,13(1): 81-84. [30] HAUCK M, BÖNING J, JACOB M, et al. Lichen substance concentrations in the lichen Hypogymnia physodes are correlated with heavy metal concentrations in the substratum[J]. Environmental and Experimental Botany, 2013, 85: 58-63. DOI:10.1016/j.envexpbot.2012.08.011. [31] CAVIGLIA A M, NICORA P, GIORDANI P, et al. Oxidative stress and usnic acid content in Parmelia caperata and Parmelia soredians(Lichenes)[J]. Il Farmaco, 2001, 56(5/6/7): 379-382. DOI:10.1016/S0014-827X(01)01090-4. [32] PURVIS O W, ELIX J A, GAUL K L. The occurrence of copper-psoromic acid in lichens from cupriferous substrata[J]. The Lichenologist, 1990, 22(3): 345-354. DOI:10.1017/s002428299000038x. [33] BJELLAND T, THORSETH I H. Comparative studies of the lichen-rock interface of four lichens in Vingen, Western Norway[J]. Chemical Geology, 2002, 192(1/2): 81-98. DOI:10.1016/s0009-2541(02)00193-6. [34] PAWLIK-SKOWRONSKA B, BACKOR M. Zn/Pb-tolerant lichens with higher content of secondary metabolites produce less phytochelatins than specimens living in unpolluted habitats[J]. Environmental and Experimental Botany, 2011, 72(1): 64-70. DOI:10.1016/j.envexpbot.2010.07.002. [35] ADAMO P. Weathering of rocks and neogenesis of minerals associated with lichen activity[J]. Applied Clay Science, 2000, 16(5/6): 229-256. DOI:10.1016/s0169-1317(99)00056-3. [36] CHEN J, BLUME H P, BEYER L. Weathering of rocks induced by lichen colonization: a review[J]. Catena, 2000, 39(2): 121-146. DOI:10.1016/s0341-8162(99)00085-5. [37] AROCENA J M, SIDDIQUE T, THRING R W, et al. Investigation of lichens using molecular techniques and associated mineral accumulations on a basaltic flow in a Mediterranean environment[J]. Catena, 2007, 70(3): 356-365. DOI:10.1016/j.catena.2006.11.006. [38] SCARCIGLIA F, LE PERA E, CRITELLI S. Weathering and pedogenesis in the Sila grande massif(calabria, south Italy): from field scale to micromorphology[J]. Catena, 2005, 61(1): 1-29. DOI:10.1016/j.catena.2005.02.001. [39] STILLINGS L L, DREVER J I, BRANTLEY S L, et al. Rates of feldspar dissolution at pH 3-7 with 0-8 m M oxalic acid[J]. Chemical Geology, 1996, 132(1/2/3/4): 79-89. DOI:10.1016/S0009-2541(96)00043-5. [40] 阿不都·阿巴斯,吴继农. 新疆地衣[M]. 乌鲁木齐: 新疆科技卫生出版社, 1998. [41] 吴金陵. 中国地衣植物图鉴[M]. 北京: 中国展望出版社. 1987. WU J L. Chinese lichen plant Atlas[M]. Beijing: China Prospect Publishing House. 1987. [42] ABDEL-HAMEED M, BERTRAND R L, PIERCEY-NORMORE M D, et al. Putative identification of the usnic acid biosynthetic gene cluster by de novo whole-genome sequencing of a lichen-forming fungus[J]. Fungal Biology, 2016, 120(3): 306-316. DOI:10.1016/j.funbio.2015.10.009. [43] BARKER W W, BANFIELD J F. Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiontic communities[J]. Chemical Geology, 1996, 132(1/2/3/4): 55-69. DOI:10.1016/s0009-2541(96)00041-1. [44] BJERKE J, ELVEBAKK A, DOMINGUEZ E, et al. Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen[J]. Phytochemistry, 2005, 66(3): 337-344. DOI:10.1016/j.phytochem.2004.12.007. [45] EDWARDS H G M, NEWTON E M, WYNN-WILLIAMS D D. Molecular structural studies of lichen substances II: atranorin, gyrophoric acid, fumarprotocetraric acid, rhizocarpic acid, calycin, pulvinic dilactone and usnic acid[J]. Journal of Molecular Structure, 2003, 651/652/653: 27-37. DOI:10.1016/s0022-2860(02)00626-9. [46] HOLDER J M, WYNN-WILLIAMS D D, RULL PEREZ F, et al. Raman spectroscopy of pigments and oxalates in situ within epilithic lichens: acarospora from the Antarctic and Mediterranean[J]. New Phytologist, 2000, 145(2): 271-280. DOI:10.1046/j.1469-8137.2000.00573.x. [47] BIALONSKA D, DAYAN F E. Chemistry of the lichen hypogymnia physodes transplanted to an industrial region[J]. Journal of Chemical Ecology, 2005, 31(12): 2975-2991. DOI:10.1007/s10886-005-8408-x. [48] 李艺明, 杨世忠, 牟伯中. 一种甲酯化n-C16-地衣素的分离及结构鉴定[J]. 化学通报, 2009(11): 1008-1012. DOI:10.14159/j.cnki.0441-3776.2009.11.012. LI Y M, YANG S Z, MOU B Z. Isolation and structural characterization of esterified n-C16-lichenysin with Methanol[J]. Chemistry Bulletin, 2009(11): 1008-1012. [49] JIE C, BLUME H P. Rock-weathering by lichens in Antarctic: patterns and mechanisms[J]. Journal of Geographical Sciences, 2002, 12(4): 387-396. DOI:10.1007/bf02844595. [50] HAUCK M, JüRGENS S R. Usnic acid controls the acidity tolerance of lichens[J]. Environmental Pollution, 2008, 156(1): 115-122. DOI:10.1016/j.envpol.2007.12.033. [51] SMITS M M, HERRMANN A M, DUANE M, et al. The fungal-mineral interface: challenges and considerations of micro-analytical developments[J].Fungal Biology Reviews, 2009, 23(4): 122-131. DOI:10.1016/j.fbr.2009.11.001. [52] SEAWARD M R D, EDWARDS H G M. Biological origin of major chemical disturbances on ecclesiastical architecture studied by fourier transform raman spectroscopy[J]. Journal of Raman Spectroscopy, 1997, 28(9): 691-696. DOI:10.1002/(sici)1097-4555(199709)28:9<691::aid-jrs161>3.0.co; 2-4. [53] FAVERO-LONGO S E, CASTELLI D, SALVADORI O, et al. Pedogenetic action of the lichens Lecidea atrobrunnea, Rhizocarpon geographicum gr. and Sporastatia testudinea on serpentinized ultramafic rocks in an alpine environment[J]. International Biodeterioration & Biodegradation, 2005, 56(1): 17-27. DOI:10.1016/j.ibiod.2004.11.006. [54] APOLLARO C, ACCORNERO M, MARINI L, et al. The impact of dolomite and plagioclase weathering on the chemistry of shallow groundwaters circulating in a granodiorite-dominated catchment of the Sila Massif(Calabria, Southern Italy)[J]. Applied Geochemistry, 2009, 24(5): 957-979. DOI:10.1016/j.apgeochem.2009.02.026. [55] TU S X, GUO Z F, SUN J H. Effect of oxalic acid on potassium release from typical Chinese soils and minerals [J]. Pedosphere, 2007, 17(4): 457-466. DOI:10.1016/S1002-0160(07)60055-1. [56] 周跃飞, 陆现彩, 王汝成, 等. 长石微生物风化作用的研究现状与展望[J]. 地球科学进展, 2008, 23(1): 17-23. DOI:10.3321/j.issn:1001-8166.2008.01.003. ZHOU Y F, LU X C, WANG R C, et al. Recent progress in the study of microbiomineralogy of feldspar[J]. Advances in Earth Science, 2008, 23(1): 17-23. [57] SHOTYK W, NESBITT H W. Incongruent and congruent dissolution of plagioclase feldspar: effect of feldspar composition and ligand complexation[J]. Geoderma, 1992, 55(1/2): 55-78. DOI:10.1016/0016-7061(92)90005-r. [58] EICK M J, GROSSL P R, GOLDEN D C, et al. Dissolution of a lunar basalt simulant as affected by pH and organic anions[J]. Geoderma, 1996, 74(1/2): 139-160. DOI:10.1016/s0016-7061(96)00055-9. [59] SCARCIGLIA F, SAPORITO N, LA RUSSA M F, et al. Role of lichens in weathering of granodiorite in the Sila Uplands(Calabria, Southern Italy)[J]. Sedimentary Geology, 2012, 280: 119-134. DOI:10.1016/j.sedgeo.2012.05.018. [60] HUTCHENS E, VALSAMI-JONES E, MCELDOWNEY S, et al. The role of heterotrophic bacteria in feldspar dissolution-an experimental approach[J]. Mineralogical Magazine, 2003, 67(6): 1157-1170. DOI:10.1180/0026461036760155. [61] ISKANDAR I K, SYERS J K. Metal-complex formation by lichen compounds[J]. Journal of Soil Science, 1972, 23(3): 255-265. DOI:10.1111/j.1365-2389.1972.tb01658.x. [62] ASCASO C, GALVAN J. Studies on the pedogenic action of lichen acids[J]. Pedobiologia, 1976, 16: 321-331. [63] ASCASO C, SANCHO L G, RODRIGUEZ-PASCUAL C. The weathering action of saxicolous lichens in maritime Antarctica[J]. Polar Biology, 1990, 11(1): 33-39. DOI:10.1007/bf00236519. [64] DREVER J I, VANCE G F. Role of soil organic acids in mineral weathering processes[C]//PITTMAN E D, LEWAN M D. Organic Acids in Geological Processes. New York: Springer, 1994. [65] WELCH S A, ULLMAN W J. The effect of organic acids on plagioclase dissolution rates and stoichiometry[J]. Geochimica Et Cosmochimica Acta, 1993, 57(12): 2725-2736. DOI:10.1016/0016-7037(93)90386-b. [66] FINLAY R, WALLANDER H, SMITS M, et al. The role of Fungi in biogenic weathering in boreal forest soils[J]. Fungal Biology Reviews, 2009, 23(4): 101-106. DOI:10.1016/j.fbr.2010.03.002. [67] WINKELMANN G. Ecology of siderophores with special reference to the fungi[J]. BioMetals, 2007, 20(3/4): 379-392. DOI:10.1007/s10534-006-9076-1. [67] HOLMSTRÖM S J M, LUNDSTRÖM U S, FINLAY R D, et al. Siderophores in forest soil solution[J]. Biogeochemistry, 2004, 71: 247-258. [69] ELBERT W, WEBER B, BURROWS S, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen[J]. Nature Geoscience, 2012, 5(7): 459-462. DOI:10.1038/ngeo1486. |
[1] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[2] | 鲁旭东, 董禹然, 李垚, 毛岭峰. 中国亚热带杉木人工林不同林分发育阶段的群落构建机制[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 67-73. |
[3] | 邢冰冰, 李垚, 毛岭峰. 植物功能性状系统发育保守性的类群和地理分异研究——以中国被子植物最大株高为例[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 59-66. |
[4] | 萨如拉, 王子瑞, 滑永春, 呼日查, 刘磊, 高明龙, 于晓雨. 基于结构方程模型的大兴安岭北部天然林森林生态系统恢复能力评价研究[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 196-204. |
[5] | 路文燕, 董灵波, 田园, 汪莎杉, 曲宣怡, 魏巍, 刘兆刚. 基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 157-165. |
[6] | 宋歌, 韩芳, 许景伟, 杨志军, 穆豪祥, 王志勇, 王哲. 基于LandUSEM模型的山东沿海防护林树种分布适宜性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 42-50. |
[7] | 邹朋峻, 关庆伟, 袁在翔, 谷雨晴, 吴茜, 牛莹莹, 陈霞, 金雪梅. 紫金山南麓枫香种群结构与动态特征[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 157-163. |
[8] | 孙美佳, 周志勇, 王勇强, 沈颖, 夏威. 有机物添加对山西太岳山油松林土壤呼吸及碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 67-75. |
[9] | 姚楠, 刘广全, 姚顺波, 贾磊, 林颖, 邓元杰, 侯孟阳. 基于坡度视角的黄土高原退耕还林(草)工程碳汇效应分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 180-188. |
[10] | 王麒淞, 国庆喜. 吉林东部天然次生林下光强衰减的空间分布特征[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 101-108. |
[11] | 邹晓明, 王国兵, 葛之葳, 谢友超, 阮宏华, 吴小巧, 杨艳. 林业碳汇提升的主要原理和途径[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 167-176. |
[12] | 徐晨, 阮宏华, 吴小巧, 谢友超, 杨艳. 干旱影响森林土壤有机碳周转及积累的研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 195-206. |
[13] | 张瑞婷, 杨金艳, 阮宏华. 树干液流对环境变化响应研究的整合分析[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 113-120. |
[14] | 李林珂, 王一诺, 薛潇, 张文, 吴焦焦, 高岚, 谭星, 荣星宇, 段儒蓉, 刘芸. 黄栌光合和呈色特性对重庆阴雨天气的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 95-103. |
[15] | 夏捷, 陈胜, 吴一凡, 张玮, 谢锦忠. 种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 127-134. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||