[1] NICOTRA A B, LEIGH A, BOYCE C K, et al. The evolution and functional significance of leaf shape in the angiosperms [J]. Functional Plant Biology, 2011, 38(7): 535-552. DOI: 10.1071/fp11057. [2] RUNIONS A, FUHRER M, LANE B, et al. Modeling and visualization of leaf venation patterns [J]. ACM Transactions on Graphics, 2005, 24(3): 702-711.DOI:10.1145/1073204.1073251. [3] RUNIONS A, TSIANTIS M, PRUSINKIEWICZ P. A common developmental program can produce diverse leaf shapes [J]. New Phytologist, 2017, 216(2): 401-418. DOI: 10.1111/nph.14449. [4] BRODRIBB T J, FEILD T S, JORDAN G J. Leaf maximum photosynthetic rate and venation are linked by hydraulics [J]. Plant Physiology, 2007, 144(4): 1890-1898.DOI:10.1104/pp.107.101352. [5] SMITH W K, VOGELMANN T C, DELUCIA E H, et al. Leaf form and photosynthesis: Do leaf structure and orientation interact to regulate internal light and carbon dioxide [J]. BioScience, 1997, 47: 785-793. [6] MILLA R, REICH P B.The scaling of leaf area and mass: the cost of light interception increases with leaf size [J]. Proceedings of the Royal Society of London B-Biological Sciences, 2007, 274(1622): 2109-2115. DOI: 10.1098/rspb.2007.0417. [7] JURIK T W.Temporal and spatial patterns of specific leaf weight in successional northern hardwood trees species [J]. American Journal of Botany, 1986, 73: 1083-1092.DOI:10.1002/j.1537-2197.1986.th08555x. [8] NIINEMETS ü, KULL K.Leaf weight per area and leaf size of 85 Estonian woody species in relation to shade tolerance and light availability [J]. Forest Ecology and Management, 1994, 70: 1-10.DOI:10.1016/0378-1127(94)90070-1. [9] THOMPSON D W.On growth and form [M]. London, UK: Cambridge University Press, 1917. [10] LIN S R, SHAO L T, HUI C, et al. Why does not the leaf weigh T-area allometry of bamboos follow the 3/2-power law? [J]. Frontiers in Plant Science, 2018, 9: 583. DOI: 10.3389/fpls.2018.00583 [11] COHEN J E, XU M.Random sampling of skewed distributions implies Taylor’s power law of fluctuation scaling [J]. Proceedings of the National Academy of Sciences, United States of America, 2015, 112(25): 7749-7754. DOI: 10.1073/pnas.1503824112. [12] TAYLOR L R.Aggregation, variance and the mean [J]. Nature, 1961, 189(4766): 732-735.DOI:10.1038/189732a0. [13] KILPATRICK A M, IVES A R. Species interactions can explain Taylor’s power law for ecological time series [J]. Nature, 2003, 422(692): 65-68. DOI: 10.1038/nature01471. [14] SHI P J, RATKOWSKY D A, WANG N T,et al. Comparison of five methods for parameter estimation under Taylor’s power law [J]. Ecological Complexity, 2017, 32: 121-130. DOI: 10.1016/j.ecocom.2017.10.006. [15] CHENG L, HUI C, REDDY G V P,et al. Internode morphometrics and allometry of Tonkin Cane Pseudosasa amabilis McClure [J]. Ecology and Evolution, 2017, 7(22): 9651-9660. DOI: 10.1002/ece3.3483. [16] KLINGENBERG C P, BARLUENGA M, MEYER A.Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry [J]. Evolution, 2002, 56(10): 1909-1920. DOI: 10.1554/0014-3820(2002)056[1909:SAOSSQ]2.0.CO; 2. [17] SCHMITT J, WULFF R D.Light spectral quality, phytochrome and plant competition [J]. Trends in Ecology and Evolution, 1993, 8(2): 47-51.DOI:10.1016/0169-5347(93)90157-k. [18] SUMIDA A, TERAZAWA I, TOGASHI A,et al. Spatial arrangement of branches in relation to slope and neighbourhood competition [J]. Annals of Botany, 2002, 89(3): 301-310. DOI: 10.1093/aob/mcf042. [19] SHI P J, ZHENG X, RATKOWSKY D A,et al. A simple method for measuring the bilateral symmetry of leaves [J]. Symmetry, 2018, 10(4): 118. DOI: 10.3390/sym10040118. [20] 方炎明. 中国鹅掌楸的地理分布与空间格局[J]. 南京林业大学学报, 1994, 18(2): 13-18.DOI:10.3969/j.issn.1000-2006.0994.02.003. FANG Y M.Geographical distribution and spatial pattern of Liriodendron chinense(Hemsl.)Sarg. [J]. Journal of Nanjing Forestry University, 1994, 18(2): 13-18. [21] 向其柏,王章荣.杂交马褂木的新名称——亚美马褂木[J].南京林业大学学报(自然科学版),2012,36(2):1-2.DOI:10.3969/j.jssn.1000-2006.2012.02.001. SHANG C B, WANG Z R.A new scientific name of hybrid Liriodendron—L. sino-americanum[J].Journal of Nanjing Forestry University(Natural Science Edition),2012,36(2):1-2. [22] SHI P J, HUANG J G, HUI C,et al. Capturing spiral radial growth of conifers using the superellipse to model tree-ring geometric shape [J]. Frontiers of Plant Science, 2015, 6: 856. DOI: 10.3389/fpls.2015.00856. [23] SHI P J, RATKOWSKY D A, LI Y, et al. A general leaf-area geometric formula exists for plants-Evidence from the simplified Gielis equation [J]. Forest, 2018, 9(11),714:DOI:10.3390/f9110714. [24] SMITH R J.Use and misuse of the reduced major axis for line-fitting [J]. American Journal of Physical Anthropology, 2009, 140: 476-786. DOI: 10.1002/ajpa.21090. [25] SANDHU H S, SHI P, KUANG X,et al. Applications of the bootstrap to insect physiology [J]. Florida Entomologist, 2011, 94: 1036-1041. [26] SHI P J, XU Q, SANDHU H S,et al. Comparison of dwarf bamboos(Indocalamus sp.)leaf parameters to determine relationship between spatial density of plants and total leaf area per plant [J]. Ecology and Evolution, 2015, 5(20): 4578-4589. DOI: 10.1002/ece3.1728. [27] CORETEAM R. A language and environment for statistical computing, Vienna [R]. Austria: R Foundation for Statistical Computing, 2015. Available online: https://www.R-project.org/(accessed on 17 April 2018). [28] BALLANTYNE IV F, KERKHOFF A J. The observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation[J]. Oikos, 2007, 116(1): 174-180. DOI: 10.1111/j.2006.0030-1299.15383.x. [29] COHEN J E, XU M, SCHUSTER W S F.Stochastic multiplicative population growth predicts and interprets Taylor’s power law of fluctuation scaling [J]. Proceedings of the Royal Society of London B-Biological Sciences, 2013, 280(1757): 20122955. DOI: 10.1098/rspb.2012.2955. [30] LIN S Y, SHAO L, HUI C, et al. The effect of temperature on the developmental rates of seedling emergence and leaf-unfolding in two dwarf bamboo species [J]. Trees-Structure and Function, 2018, 32: 751-763. DOI: 10.1007/s00468-018-1669-0. [31] SHI P J, SANDHU H S, REDDY G V P.Dispersal distance determines the exponent of the spatial Taylor’s power law [J]. Ecological Modelling, 2016, 335: 48-53. DOI: 10.1016/j.ecolmodel.2016.05.008. [32] WANG P, RATKOWSKY D A, XIAO X, et al. Taylor’s power law for leaf bilateral symmetry [J]. Forests, 2018, 9(8): 500. DOI: 10.3390/f9080500. [33] LIN S, ZHANG L, REDDY G V P, et al. A geometrical model for testing bilateral symmetry of bamboo leaf with a simplified Gielis equation [J]. Ecology and Evolution, 2016, 6: 6798-6806. DOI: 10.1002/ece3.2407. [34] KüPPERS M.Ecological significance of above-ground architectural patterns in woody plants: a question of cost-benefit relationships [J]. Trends in Ecology and Evolution, 1989, 4: 375-379. [35] WRIGHT I J, DONG N, MAIRE V, et al. Global climatic drivers of leaf size [J]. Science, 2017, 357(6354): 917-921. DOI: 10.1126/science.aa14760. |