南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (1): 81-88.doi: 10.3969/j.issn.1000-2006.201808031
邓小军1(), 唐健1, 王会利1, 宋贤冲1, 曹继钊1, 覃祚玉1, 宋光桃2,*()
收稿日期:
2018-08-15
修回日期:
2019-10-22
出版日期:
2020-02-08
发布日期:
2020-02-02
通讯作者:
宋光桃
作者简介:
邓小军( 基金资助:
DENG Xiaojun1(), TANG Jian1, WANG Huili1, SONG Xianchong1, CAO Jizhao1, QING Zuoyu1, SONG Guangtao2,*()
Received:
2018-08-15
Revised:
2019-10-22
Online:
2020-02-08
Published:
2020-02-02
Contact:
SONG Guangtao
摘要:
【目的】 揭示环境因子对猫儿山自然保护区不同海拔植被带土壤呼吸和硝化-反硝化作用的影响。【方法】 以广西猫儿山自然保护区不同植被带为研究对象,应用气压过程分离系统BaPS(barometric process separation system)研究了不同海拔植被带的土壤呼吸速率(SRR, soil respiration rate)、总硝化速率(GNR, gross nitrification rate)、反硝化速率(DR, denitrification rate),及其对土壤温度等环境因子的响应规律。【结果】 在自然土壤温度下,土壤呼吸速率杉木人工林 (Chinese fir plantation, CFP) >常绿、落叶阔叶混交林 (evergreen and deciduous broad-leaved forest, EDBF) >毛竹人工林(bamboo plantation, BP)>山顶灌丛 (mountaintop shrub, MS)> 南方铁杉林 (southern hemlock forest, SHF) >水青冈天然林 (beech natural forest, BNF),CFP最高为361.6 μg/(kg ·h);总硝化速率SHF最高为275.3 μg/(kg ·h),BP最低为58.3 μg/(kg ·h);反硝化速率为BP> CFP> EDBF> BNF> SHF>MS,BP最高为172.2 μg/(kg·h)。土壤温度在5~20 ℃变化时,6种植被带的土壤呼吸速率、总硝化速率、反硝化速率均随着温度的上升而增加。相关性分析表明,海拔、土壤温度、含水量、pH、有机质、全氮、全钾、速效氮磷钾是影响土壤硝化-反硝化和呼吸作用的重要因子。【结论】 低海拔人工林在自然温度下具有比高海拔天然林更高的土壤呼吸速率和反硝化速率,但是高海拔植被带土壤硝化-反硝化和呼吸作用对温度变化具有更高的敏感性,在气候变暖过程中,高海拔植被带土壤可能会释放更多的温室气体增量。
中图分类号:
邓小军,唐健,王会利,等. 猫儿山自然保护区沿海拔分布植被带土壤硝化-反硝化和呼吸作用分析[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 81-88.
DENG Xiaojun, TANG Jian, WANG Huili, SONG Xianchong, CAO Jizhao, QING Zuoyu, SONG Guangtao. Soil nitrification denitrification respiration and their influence factor analysis in different vegetation zones along elevationnal gradient in Mao’er Mountain of China[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(1): 81-88.DOI: 10.3969/j.issn.1000-2006.201808031.
表1
猫儿山不同植被带样地特征"
植被带 vegetation zones | 海拔/m elevation | 土壤类型 soil type | 坡度/ (°) slope | 坡向/ (°) slope aspect | 郁闭度 canopy density | 土壤温度/℃ soil temperature | 地理坐标 geographic coordinate | 主要树种组成 dominant species in tree layer |
---|---|---|---|---|---|---|---|---|
杉木人工林(CFP) Chinese fir plantation | 1 130 | 山地黄红壤 | 5 | NE 61 | 0.85 | 11.48 | 110°29'13″E, 25°53'15″N | 杉木(Cunninghamia lanceolata)、青窄槭(Acer davidii)、光皮梾(Swida wilsoniana)等 |
毛竹人工林(BP) bamboo plantation | 1 144 | 山地黄红壤 | 2 | NE 49 | 0.80 | 12.00 | 110°29'17″E, 25°54'21″N | 毛竹(Phyllostachys heterocycla)、交让木(Daphniphyllum macropodum)、团叶杜鹃(Rhododendron orbiculare)等 |
常绿、落叶阔叶 混交林(EDBF) evergreen and deciduous broad-leaved forest | 1 222 | 山地黄壤 | 42 | NE 50 | 0.80 | 10.52 | 110°29'27″E, 25°53'15″N | 罗浮栲(Castanopsis faberi)、钩栗(Castanopsis tibetana)、白辛树(Pterostyrax psilophyllus)等 |
水青冈天然林(BNF) beech natural forest | 1 385 | 山地黄壤 | 35 | SE 135 | 0.75 | 9.58 | 110°27'54″E, 25°54'21″N | 长柄水青冈(Fagus longipetiolata)、摆竹(Indosasa shibataeoides)、团叶杜鹃等 |
南方铁杉林(SHF) southern hemlock forest | 2 042 | 泥炭土 | 2 | 0 | 0.70 | 7.46 | 110°26'01″E, 25°53'48″N | 南方铁杉(Tsuga chinensis)、曼椆(Cyclobalanopsis oxyodon)、丁香杜鹃(Rhododendron farrerae)等 |
山顶灌丛(MS) mountaintop shrub | 2 045 | 山地黄棕壤 | 12 | NE 62 | 0.90 | 8.04 | 110°24'45″E, 25°51'58″N | 豪猪刺(Berberis julianae)、三花冬青(Ilex triflora)、灯笼树(Enkianthus chinensis)等 |
表2
不同植被带样地土壤理化性质"
植被带 vegetation zones | pH | 有机质含量/ (g·kg-1) organic matter content | 全氮含量/ (g·kg-1) total N content | 全磷含量 (P2O5) / (g·kg-1) total P content | 全钾含量 (K2O) / (g·kg-1) total K content | 速效氮含量/ (mg·kg-1) available N content | 速效磷含量/ (mg·kg-1) available P content | 速效钾含量/ (mg·kg-1) available K content | 质量含水量/% moisture content | 碳氮比 C/N |
---|---|---|---|---|---|---|---|---|---|---|
CFP | 4.44±0.19 c | 109.21±15.91 ab | 4.68±0.62 ab | 2.38±0.25 b | 32.48±0.95 c | 366.50±40.18 a | 2.93±0.64 a | 66.37±2.29 a | 55.22±7.86 ab | 13.53±0.23 c |
BP | 4.94±0.10 d | 103.27±17.69 ab | 4.08±0.31 a | 1.96±0.13 a | 26.70±7.38 bc | 366.28±149.31 a | 1.23±1.03 a | 41.80±9.00 a | 43.15±3.11 a | 14.64±1.66 c |
EDBF | 4.10±0.02 b | 149.39±35.63 b | 6.40±1.62 b | 2.00±0.30 a | 23.66±2.78 b | 631.33±176.80 b | 3.10±0.98 a | 78.07±9.50 a | 63.02±14.81 ab | 13.57±0.38 c |
BNF | 3.92±0.16 b | 73.65±9.03 a | 5.23±0.49 ab | 1.94±0.10 a | 30.32±0.28 bc | 365.07±85.87 a | 1.20±0.17 a | 114.07±18.03 ab | 77.57±11.40 ab | 8.16±0.56 a |
SHF | 3.40±0.06 a | 707.61±51.83 d | 21.11±0.81 d | 1.77±0.08 a | 8.62±3.39 a | 1830.20±82.82 d | 7.37±3.18 b | 233.80±83.86 c | 276.08±67.20 c | 19.47±1.90 d |
MS | 3.51±0.10 a | 244.81±45.17 c | 12.94±1.25 c | 1.76±0.15 a | 25.82±0.44 bc | 974.27±147.72 c | 3.70±2.61 a | 152.50±32.44 b | 109.52±1.53 b | 10.98±1.72 b |
表3
猫儿山自然保护区森林土壤呼吸速率、总硝化速率、反硝化速率和土壤理化因子及海拔的相关性"
项目 item | pH | 有机质 organic matter | 全氮 total N | 全磷 (P2O5) total P | 全钾 (K2O) total K | 速效氮 available N | 速效磷 available P | 速效钾 available K | 含水量 moisture content | 碳氮比 C/N | 海拔 elevation | 土壤 温度 soil temperature | 土壤呼吸 速率 SRR | 总硝化 速率 GNR | 反硝化 速率 DR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | ||||||||||||||
有机质 | -0.650** | 1 | |||||||||||||
全量氮 | -0.788** | 0.954** | 1 | ||||||||||||
全量磷 | 0.483* | -0.395 | -0.472* | 1 | |||||||||||
全量钾 | 0.531* | -0.891** | -0.824** | 0.467 | 1 | ||||||||||
速效氮 | -0.731** | 0.973** | 0.983** | -0.433 | -0.871** | 1 | |||||||||
速效磷 | -0.544* | 0.779** | 0.795** | -0.064 | -0.662** | 0.820** | 1 | ||||||||
速效钾 | -0.771** | 0.799** | 0.877** | -0.386 | -0.683** | 0.853** | 0.822** | 1 | |||||||
含水量 | -0.697** | 0.950** | 0.912** | -0.479* | -0.857** | 0.916** | 0.666** | 0.834** | 1 | ||||||
C/N | -0.082 | 0.755** | 0.567* | -0.086 | -0.740** | 0.663** | 0.580* | 0.323 | 0.629** | 1 | |||||
海拔 | -0.841** | 0.777** | 0.910** | -0.601** | -0.670** | 0.865** | 0.647** | 0.788** | 0.749** | 0.339 | 1 | ||||
温度 | 0.955** | -0.727** | -0.866** | 0.601** | 0.607** | -0.806** | -0.580* | -0.854** | -0.771** | -0.137 | -0.912** | 1 | |||
SRR | -0.852** | 0.698** | 0.836** | -0.359 | -0.512* | 0.779** | 0.659** | 0.740** | 0.678** | 0.276 | -0.890** | 0.555* | 1 | ||
GNR | -0.890** | 0.801** | 0.926** | -0.591** | -0.698** | 0.886** | 0.672** | 0.821** | 0.784** | 0.338 | 0.964** | -0.760** | 0.923** | 1 | |
DR | -0.821** | 0.897** | 0.977** | -0.589* | -0.774** | 0.940** | 0.708** | 0.857** | 0.875** | 0.468* | -0.963** | 0.850** | 0.868** | 0.965** | 1 |
[1] | 于辉, 陈燕, 张欢, 等. 添加无机氮对山西太岳山油松林土壤氮素及温室气体通量的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(3):85-91. |
YU H, CHEN Y, ZHANG H, et al. The effect of inorganic nitrogen addition on soil nitrogen and greenhouse gas flux for the Pinus tabulaeformis forest in Taiyue Mountain, Shanxi Province [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(3):85-91. DOI: 10.3969/j.issn.1000-2006.201805047.
doi: 10.3969/j.issn.1000-2006.201805047 |
|
[2] | 孙宝玉, 韩广轩. 模拟增温对土壤呼吸影响机制的研究进展与展望[J]. 应用生态学报, 2016, 27(10):3394-3402. |
SUN B Y, HAN G X. Research and prospects for response mechanisms of soil respiration to experimental warming[J]. Chinese Journal of Applied Ecology, 2016, 27(10):3394-3402. DOI: 10.13287/j.1001-9332.201610.037.
doi: 10.13287/j.1001-9332.201610.037 |
|
[3] | 白日军, 杨治平, 张强, 等. 晋西北不同年限小叶锦鸡儿灌丛土壤氮矿化和硝化作用[J]. 生态学报, 2016, 36(24):8008-8014. |
BAI R J, YANG Z P, ZHANG Q, et al. Soil nitrogen mineralization and nitrification under Caragana microphylla shrubs of different ages in the northwestern Shanxi Loess Plateau [J]. Acta Ecologica Sinica, 2016, 36(24):8008-8014. DOI: 10.5846/stxb201506101175.
doi: 10.5846/stxb201506101175 |
|
[4] | 赵吉霞, 王邵军, 陈奇伯, 等. 滇中高原云南松幼林和成熟林土壤呼吸及主要影响因子分析[J]. 南京林业大学学报(自然科学版), 2014, 38(3):71-76. |
ZHAO J X, WANG S J, CHEN Q B, et al. Soil respiration and its affecting factors in young and mature forests of Pinus yunnanensis in middle Yunnan Plateau, China [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(3):71-76. DOI: 10.3969/j.issn.1000-2006.2014.03.014.
doi: 10.3969/j.issn.1000-2006.2014.03.014 |
|
[5] | 邓小军, 陈晓龙, 唐健, 等. 基于Nemerow法的森林土壤肥力综合指数评价[J]. 草业学报, 2016, 25(7):34-41. |
DENG X J, CHEN X L, TANG J, et al. Assessment of forest soil fertility using an integrated index based on the Nemerow method[J]. Acta Prataculturae Sinica, 2016, 25(7):34-41. DOI: 10.11686/cyxb2015435.
doi: 10.11686/cyxb2015435 |
|
[6] |
HANSON P J, EDWARDS N T, GARTEN C T, et al. Separating root and soil microbial contributions to soil respiration: a review of methods and observations[J]. Biogeochemistry, 2000, 48(1):115-146. DOI: 10.1023/a:1006244819642.
doi: 10.1023/a:1006244819642 |
[7] | 施政, 汪家社, 何容, 等. 武夷山不同海拔植被土壤呼吸季节变化及对温度的敏感性[J]. 应用生态学报, 2008, 19(11):2357-2363. |
SHI Z, WANG J S, HE R, et al. Seasonal variation and temperature sensitivity of soil respiration under different plant communities along an elevation gradient in Wuyi Mountains of China[J]. Chinese Journal of Applied Ecology, 2008, 19(11):2357-2363. DOI: 10.13287/j.1001-9332.2008.0414.
doi: 10.13287/j.1001-9332.2008.0414 |
|
[8] | 苗方琴, 汪金松, 孙继超, 等. 太岳山油松天然林不同土层的碳氮转化速率[J]. 应用与环境生物学报, 2010, 16(4):519-522. |
MIAO F Q, WANG J S, SUN J C, et al. Conversion rate of soil carbon and nitrogen in naturalPinus tabulaeformis forest on the Taiyue Mountains, China [J]. Chinese Journal of Applied & Environmental Biology, 2010, 16(4):519-522. DOI: 10.3724/SP.J.1145.2010.00519.
doi: 10.3724/SP.J.1145.2010.00519 |
|
[9] | 高文栋, 钟圣赟, 刘伟丰, 等. 吊罗山青皮林土壤硝化-反硝化作用及其影响因素[J]. 林业资源管理, 2014(5):69-73. |
GAO W D, ZHONG S Y, LIU W F, et al. The intensity of soil nitrification-denitrification and its influence factors in Diaoluoshan Vatica mangachapoi forest [J]. Forest Resources Management, 2014(5):69-73. DOI: 10.13466/j.cnki.lyzygl.2014.05.013.
doi: 10.13466/j.cnki.lyzygl.2014.05.013 |
|
[10] | 孙志高, 刘景双, 杨继松, 等. 三江平原典型小叶章湿地土壤硝化-反硝化作用与氧化亚氮排放[J]. 应用生态学报, 2007, 18(1):185-192. |
SUN Z G, LIU J S, YANG J S, et al. Nitrification-denitrification and N2O emission of typical Calamagrostis angustifolia wetland soils in Sanjiang Plain [J]. Chinese Journal of Applied Ecology, 2007, 18(1):185-192. DOI: 10.13287/j.1001-9332.2007.0032.
doi: 10.13287/j.1001-9332.2007.0032 |
|
[11] | 刘巧辉, 黄耀, 郑循华. 基于BaPS系统的旱地土壤呼吸作用及其分量确定探讨[J]. 环境科学学报, 2005(8):1105-1111. |
LIU Q H, HUANG Y, ZHENG X H. Determination of upland soil respiration and its components with BaPS system[J]. Acta Scientiae Circumstantiae, 2005, 25(8):1105-1111. DOI: 10.3321/j.issn:0253-2468.2005.08.019.
doi: 10.3321/j.issn:0253-2468.2005.08.019 |
|
[12] | 刘艳, 陈书涛, 刘燕, 等. 增温对农田土壤碳氮循环关键过程的影响[J]. 中国环境科学, 2013, 33(4):674-679. |
LIU Y, CHEN S T, LIU Y, et al. Effects of simulated warming on the key processes of soil carbon and nitrogen cycling in a cropland[J]. China Environmental Science, 2013, 33(4):674-679. DOI: 10.3969/j.issn.1000-6923.2013.04.014.
doi: 10.3969/j.issn.1000-6923.2013.04.014 |
|
[13] | 刘巧辉. 应用BaPS系统研究旱地土壤硝化—反硝化过程和呼吸作用[D]. 南京: 南京农业大学, 2005. |
LIU Q H. Using BaPS system to study upland soil nitrification-denitrification and respiration[D]. Nanjing: Nanjing Agricultural University, 2005. | |
[14] | 刘方平, 柳根水, 许亚群, 等. 基于BaPS系统的棉花土壤硝化和反硝化作用分析[J]. 江西农业学报, 2011, 23(12):121-123. |
LIU F P, LIU G S, XU Y Q, et al. Analysis of nitrification and denitrification in soil of cotton field based on BaPS system[J]. Acta Agriculturae Jiangxi, 2011, 23(12):121-123. DOI: 10.19386/j.cnki.jxnyxb.2011.12.036.
doi: 10.19386/j.cnki.jxnyxb.2011.12.036 |
|
[15] | 付素静. 干旱荒漠区典型土壤硝酸盐分布特征及硝化反硝化作用研究[D]. 兰州:兰州大学, 2012. |
FU S J. Nitrification-Denitrification in the soils of desert areas, northwest China[D]. Lanzhou: Lanzhou University, 2012. | |
[16] |
孙庚, 吴宁, 罗鹏. 不同管理措施对川西北草地土壤氮和碳特征的影响[J]. 植物生态学报, 2005, 29(2):304-310.
doi: 10.17521/cjpe.2005.0039 |
SUN G, WU N, LUO P. Chara cteristics of soil nitrogen and carbon of pastures under different management in northwestern Sichuan[J]. Acta Phytoecologica Sinica, 2005, 29(2):304-310. DOI: 10.17521/cjpe.2005.0039.
doi: 10.17521/cjpe.2005.0039 |
|
[17] | 邓小军, 曹继钊, 宋贤冲, 等. 猫儿山自然保护区3种森林类型土壤养分垂直分布特征[J]. 生态科学, 2014, 33(6):1129-1134. |
DENG X J, CAO J Z, SONG X C, et al. Vertical distribution characteristics of three forest types’ soil properties on Mao’er Mountain Biosphere Reserve[J]. Ecological Science, 2014, 33(6):1129-1134. DOI: 10.14108/j.cnki.1008-8873.2014.06.015.
doi: 10.14108/j.cnki.1008-8873.2014.06.015 |
|
[18] | 宋贤冲, 曹继钊, 唐健, 等. 猫儿山常绿阔叶林不同土层土壤微生物群落功能多样性[J]. 生态科学, 2015, 34(6):93-99. |
SONG X C, CAO J Z, TANG J, et al. Soil microbial functional diversity of subtropical evergreen broad-leaved forest in Maoer Mountain[J]. Ecological Science, 2015, 34(6):93-99. DOI: 10.14108/j.cnki.1008-8873.2015.06.015.
doi: 10.14108/j.cnki.1008-8873.2015.06.015 |
|
[19] | 黄金玲, 蒋得斌. 广西猫儿山自然保护区综合科学考察[M]. 长沙: 湖南科学技术出版社, 2010. |
HUANG J L, JIANG D B. Integrated scientific investigation of Maoershan Natural Reserve of Guangxi[M]. Changsha: Hunan Science and Techonology Press, 2010. | |
[20] | 中国林业科学研究院. 森林生态系统长期定位观测方法: LY/T 1952—2011[S]. 北京: 中国林业科学研究院, 2011. |
CSFA. Observation methodology for long-term forest ecosystem research: LY/T 1952—2011[S]. Beijing: China State Forestry Administration, 2011. | |
[21] | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
LU R K. Methodology for soil agricultural chemical analysis[M]. Beijing: China Agriculture Science and Technique Press, 2000. | |
[22] | 孙杰杰, 江波, 吴初平, 等. 浙江省檫木林生境与生态位研究[J]. 生态学报, 2019, 39(3):131-141. |
SUN J J, JIANG B, WU C P, et al. Study on the habitat and niche of Sassafras tzumu (Hemsl.) Hemsl. in Zhejiang Province [J]. Acta Ecologica Sinica, 2019, 39(3):131-141. DOI: 10.5846/stxb201804030749.
doi: 10.5846/stxb201804030749 |
|
[23] |
RUSTAD L E, CRONAN C S. Element loss and retention during litter decay in a red spruce stand in Maine[J]. Canadian Journal Forest Research, 1988, 18(6):947-953. DOI: 10.1139/x88-144.
doi: 10.1139/x88-144 |
[24] |
LI T, DI Z, HAN X, et al. Elevated CO2 improves root growth and cadmium accumulation in the hyperaccumulator Sedum alfredii[J]. Plant and Soil, 2012, 354(1/2):325-334. DOI: 10.1007/s11104-011-1068-4.
doi: 10.1007/s11104-011-1068-4 |
[25] |
RAICH J W, TUFEKCIOGLU A, RUSTAD L E, et al. Vegetation and soil respiration: correlations and controls[J]. Biogeochemistry, 2000, 48(1):71-90. DOI: 10.1023/a:1006112000616.
doi: 10.1023/a:1006112000616 |
[26] |
LUKOW T, DIEKMANN H. Aerobic denitrification by a newly isolated heterotrophic bacterium strain TL1[J]. Biotechnology Letters, 1997, 19(11):1157-1159. DOI: 10.1023/A:1018465232392.
doi: 10.1023/A:1018465232392 |
[27] | 周立祥, 黄峰源, 王世梅. 好氧反硝化菌的分离及其在土壤氮素转化过程中的作用[J]. 土壤学报, 2006, 43(3):430-435. |
ZHOU L X, HUANG F Y, WANG S M. Isolation of aerobic denitrifiers and their roles in soil nitrogen transformation[J]. Acta Pedologica Sinica, 2006, 43(3):430-435. DOI: 10.3321/j.issn:0564-3929.2006.03.011.
doi: 10.3321/j.issn:0564-3929.2006.03.011 |
|
[28] |
TIAN X F, HU H W, DING Q, et al. Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow[J]. Biology and Fertility of Soils, 2014, 50(4):703-713. DOI: 10.1007/s00374-013-0889-0.
doi: 10.1007/s00374-013-0889-0 |
[29] |
WU Q, KNOWLES R, NIVEN D F. O2 regulation of denitrification in Flexibacter canadensis[J]. Canadian Journal of Microbiology, 1994, 40(11):916-921. DOI: 10.1139/m94-147.
doi: 10.1139/m94-147 |
[30] |
DENMEAD O T, FRENEY J R, SIMPSON J R . Nitrous oxide emission during denitrification in a flooded Field1[J]. Soil Science Society of America Journal, 1979, 43(4):716. DOI: 10.2136/sssaj1979.03615995004300040017x.
doi: 10.2136/sssaj1979.03615995004300040017x |
[31] | 吴鹏, 崔迎春, 杨婷, 等. 茂兰喀斯特森林主要演替群落土壤呼吸研究[J]. 南京林业大学学报(自然科学版), 2013, 37(4):57-62. |
WU P, CUI Y C, YANG T, et al. Soil respiration of major successional communities in the Maolan Nature Reserve of Karst areas[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(4):57-62. DOI: 10.3969/j.issn.1000-2006.2013.04.011.
doi: 10.3969/j.issn.1000-2006.2013.04.011 |
|
[32] | 牟守国. 温带阔叶林、针叶林和针阔混交林土壤呼吸的比较研究[J]. 土壤学报, 2004, 41(4):564-570. |
MOU S G. Respiration of soils under temperate deciduous, coniferous and mixed forests[J]. Acta Pedologica Sinica, 2004, 41(4):564-570. DOI: 10.11766/trxb200307050411.
doi: 10.11766/trxb200307050411 |
|
[33] | 陈全胜, 李凌浩, 韩兴国, 等. 土壤呼吸对温度升高的适应[J]. 生态学报, 2004, 24(11):2649-2655. |
CHEN Q S, LI L H, HAN X G, et al. Acclimatization of soil respiration to warming[J]. Acta Ecologica Sinica, 2004, 24(11):2649-2655. DOI: 10.3321/j.issn:1000-0933.2004.11.044.
doi: 10.3321/j.issn:1000-0933.2004.11.044 |
|
[34] |
SHAW M R, HARTE J. Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change[J]. Ecological Applications, 2001, 11(4):1206-1223. DOI: 10.2307/3061022.
doi: 10.2307/3061022 |
[35] |
MELILLO J M. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298(5601):2173-2176. DOI: 10.1126/science.1074153.
doi: 10.1126/science.1074153 |
[36] | 赵超, 彭赛, 阮宏华, 等. 氮沉降对土壤微生物影响的研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(3):149-155. |
ZHAO C, PENG S, RUAN H H, et al. Effects of nitrogen deposition on soil microbes[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(3):149-155. DOI: 10.3969/j.issn.1000-2006.2015.03.027.
doi: 10.3969/j.issn.1000-2006.2015.03.027 |
|
[37] |
ZHANG Z S, DONG X J, LIU Y B, et al. Soil oxidases recovered faster than hydrolases in a 50-year chronosequence of desert revegetation[J]. Plant and Soil, 2012, 358(1/2):275-287. DOI: 10.1007/s11104-012-1162-2.
doi: 10.1007/s11104-012-1162-2 |
[38] |
SONG L, TIAN P, ZHANG J, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China[J]. Science of The Total Environ, 2017, 609:1303-1311. DOI: 10.1016/j.scitotenv.2017.08.017.
doi: 10.1016/j.scitotenv.2017.08.017 |
[1] | 谢燕燕, 郭子武, 林树燕, 左珂怡, 杨丽婷, 徐森, 谷瑞, 陈双林. 毛竹林下植被演替过程中土壤颗粒组成与水分入渗特征[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 108-116. |
[2] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[3] | 左壮, 张韫, 崔晓阳. 火烧对兴安落叶松林土壤氮形态和含量的初期影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 147-154. |
[4] | 孙劲伟, 王圣燕, 范弟武, 朱咏莉. C源与NP添加对Cd胁迫下林地土壤呼吸作用的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 140-146. |
[5] | 陈明, 刘亮. 采样间隔对城市表土剖面磁化率变化的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 61-69. |
[6] | 张相, 丁鸣鸣, 林杰, 李卓远, 崔琳琳, 郭赓, 杨皓. 水蚀作用下红壤丘陵区土壤特性的空间分异特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 77-84. |
[7] | 杨瑞, 吴朝明, 朱骊, 胡海波. 苏南丘陵区坡面经济林土壤侵蚀特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 70-76. |
[8] | 徐子涵, 王磊, 崔明, 刘玉国, 赵紫晴, 李嘉豪. 南水北调水源区不同植被恢复模式的土壤化学计量特征[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 173-181. |
[9] | 杜志琦, 孟庆繁, 冯立超, 葛佳荣, 黄劲斌, 史晶晶, 李洪锐, 岑祖才. 冷藏条件下土样保存时间对甲螨(甲螨亚目)和跳虫(弹尾纲)类物种分离的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 213-218. |
[10] | 卢伟伟, 胡嘉欣, 陈思桦, 陈玮铃, 冯思宇. 苏北滨海土壤无机碳含量的测定方法比较[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 76-82. |
[11] | 杨永超, 段文标, 陈立新, 曲美学, 王亚飞, 王美娟, 石金永, 潘磊. 模拟氮磷沉降和凋落物处理对两种林型红松林土壤有机碳组分的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 57-66. |
[12] | 薛建辉, 周之栋, 吴永波. 喀斯特石漠化山地退化土壤生态修复研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 135-145. |
[13] | 林杰, 张相, 姜姜, 蒯杰, 郭赓, 孟苗婧, 李肖. 水力侵蚀过程中土壤有机碳循环研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 187-194. |
[14] | 李惠芝, 关庆伟, 赵家豪, 李俊杰, 王磊, 李凤凤, 左兴平, 陈斌. 地形对麻栎人工林土壤肥力质量的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 161-168. |
[15] | 赵凯歌, 周正虎, 金鹰, 王传宽. 长期氮添加对落叶松和水曲柳人工林土壤碳、氮、磷含量和胞外酶活性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 177-184. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||