猫儿山自然保护区沿海拔分布植被带土壤硝化-反硝化和呼吸作用分析

邓小军, 唐健, 王会利, 宋贤冲, 曹继钊, 覃祚玉, 宋光桃

南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (1) : 81-88.

PDF(1640 KB)
PDF(1640 KB)
南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (1) : 81-88. DOI: 10.3969/j.issn.1000-2006.201808031
研究论文

猫儿山自然保护区沿海拔分布植被带土壤硝化-反硝化和呼吸作用分析

作者信息 +

Soil nitrification denitrification respiration and their influence factor analysis in different vegetation zones along elevationnal gradient in Mao’er Mountain of China

Author information +
文章历史 +

摘要

【目的】 揭示环境因子对猫儿山自然保护区不同海拔植被带土壤呼吸和硝化-反硝化作用的影响。【方法】 以广西猫儿山自然保护区不同植被带为研究对象,应用气压过程分离系统BaPS(barometric process separation system)研究了不同海拔植被带的土壤呼吸速率(SRR, soil respiration rate)、总硝化速率(GNR, gross nitrification rate)、反硝化速率(DR, denitrification rate),及其对土壤温度等环境因子的响应规律。【结果】 在自然土壤温度下,土壤呼吸速率杉木人工林 (Chinese fir plantation, CFP) >常绿、落叶阔叶混交林 (evergreen and deciduous broad-leaved forest, EDBF) >毛竹人工林(bamboo plantation, BP)>山顶灌丛 (mountaintop shrub, MS)> 南方铁杉林 (southern hemlock forest, SHF) >水青冈天然林 (beech natural forest, BNF),CFP最高为361.6 μg/(kg ·h);总硝化速率SHF最高为275.3 μg/(kg ·h),BP最低为58.3 μg/(kg ·h);反硝化速率为BP> CFP> EDBF> BNF> SHF>MS,BP最高为172.2 μg/(kg·h)。土壤温度在5~20 ℃变化时,6种植被带的土壤呼吸速率、总硝化速率、反硝化速率均随着温度的上升而增加。相关性分析表明,海拔、土壤温度、含水量、pH、有机质、全氮、全钾、速效氮磷钾是影响土壤硝化-反硝化和呼吸作用的重要因子。【结论】 低海拔人工林在自然温度下具有比高海拔天然林更高的土壤呼吸速率和反硝化速率,但是高海拔植被带土壤硝化-反硝化和呼吸作用对温度变化具有更高的敏感性,在气候变暖过程中,高海拔植被带土壤可能会释放更多的温室气体增量。

Abstract

【Objective】 To study the effects of soil respiration, nitrification, and denitrification and the influence of various environmental factors in vegetation zones at different altitudes in the Mao’er Mountain.【Method】 Different forest types at a National Nature Reserve in Mao’er Mmountain were the experimental sites. Soil respiration rate (SRR), gross nitrification rate (GNR) and denitrification rate (DR) in different vegetation zones at different altitudes were investigated based on the Barometric Process Separation system, and the response of SRR, GNR or DR to soil temperature and other environmental factors was studied.【Result】 Under normal temperature, the SRR was in the order of Chinese fir plantation (CFP) > evergreen and deciduous broad-leaved forest (EDBF) > bamboo plantation (BP) > mountaintop shrub (MS) > (Southern hemlock forest (SHF) > Beech natural forest (BNF), and the highest rate was 361.6 μg/(kg·h) at CPF. The GNR in the SHF was 275.3 μg/(kg·h), and the lowest GNR was 58.3 μg/(kg·h) in the BP. In addition, the DRs were in the order BP>CFP>EDBF>BNF>SHF>MS, and the highest was 172.2 μg/(kg·h) at BP. SRR, GNR and DR in the six vegetation zones increased with an increase of temperature when the temperature was between 5 ℃ and 20 ℃. Correlation analysis results revealed that altitude, soil temperature, water content, pH, organic matter concentration, total nitrogen, total potassium, available N, available P and available K were the key factors influencing SRR, GNR and DR. 【Conclusion】 Low altitude plantations had higher SRRs and DRs than high altitude natural forests. However, soil nitrification, denitrification and respiration were more sensitive to temperature changes in high altitude vegetation. In the wake of climate change and the ensuing warming, soils in high altitude vegetation zones could release higher amounts of greenhouse gases.

关键词

土壤呼吸速率 / 总硝化速率 / 反硝化速率 / 海拔垂直植被带 / 猫儿山

Key words

soil respiration rate / gross nitrification rate / denitrification rate / vertical vegetation zone / Mao’er Mountain

引用本文

导出引用
邓小军, 唐健, 王会利, . 猫儿山自然保护区沿海拔分布植被带土壤硝化-反硝化和呼吸作用分析[J]. 南京林业大学学报(自然科学版). 2020, 44(1): 81-88 https://doi.org/10.3969/j.issn.1000-2006.201808031
DENG Xiaojun, TANG Jian, WANG Huili, et al. Soil nitrification denitrification respiration and their influence factor analysis in different vegetation zones along elevationnal gradient in Mao’er Mountain of China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(1): 81-88 https://doi.org/10.3969/j.issn.1000-2006.201808031
中图分类号: S714   

参考文献

[1]
于辉, 陈燕, 张欢, 等. 添加无机氮对山西太岳山油松林土壤氮素及温室气体通量的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(3):85-91.
YU H, CHEN Y, ZHANG H, et al. The effect of inorganic nitrogen addition on soil nitrogen and greenhouse gas flux for the Pinus tabulaeformis forest in Taiyue Mountain, Shanxi Province [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(3):85-91. DOI: 10.3969/j.issn.1000-2006.201805047.
[2]
孙宝玉, 韩广轩. 模拟增温对土壤呼吸影响机制的研究进展与展望[J]. 应用生态学报, 2016, 27(10):3394-3402.
SUN B Y, HAN G X. Research and prospects for response mechanisms of soil respiration to experimental warming[J]. Chinese Journal of Applied Ecology, 2016, 27(10):3394-3402. DOI: 10.13287/j.1001-9332.201610.037.
[3]
白日军, 杨治平, 张强, 等. 晋西北不同年限小叶锦鸡儿灌丛土壤氮矿化和硝化作用[J]. 生态学报, 2016, 36(24):8008-8014.
BAI R J, YANG Z P, ZHANG Q, et al. Soil nitrogen mineralization and nitrification under Caragana microphylla shrubs of different ages in the northwestern Shanxi Loess Plateau [J]. Acta Ecologica Sinica, 2016, 36(24):8008-8014. DOI: 10.5846/stxb201506101175.
[4]
赵吉霞, 王邵军, 陈奇伯, 等. 滇中高原云南松幼林和成熟林土壤呼吸及主要影响因子分析[J]. 南京林业大学学报(自然科学版), 2014, 38(3):71-76.
ZHAO J X, WANG S J, CHEN Q B, et al. Soil respiration and its affecting factors in young and mature forests of Pinus yunnanensis in middle Yunnan Plateau, China [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(3):71-76. DOI: 10.3969/j.issn.1000-2006.2014.03.014.
[5]
邓小军, 陈晓龙, 唐健, 等. 基于Nemerow法的森林土壤肥力综合指数评价[J]. 草业学报, 2016, 25(7):34-41.
DENG X J, CHEN X L, TANG J, et al. Assessment of forest soil fertility using an integrated index based on the Nemerow method[J]. Acta Prataculturae Sinica, 2016, 25(7):34-41. DOI: 10.11686/cyxb2015435.
[6]
HANSON P J, EDWARDS N T, GARTEN C T, et al. Separating root and soil microbial contributions to soil respiration: a review of methods and observations[J]. Biogeochemistry, 2000, 48(1):115-146. DOI: 10.1023/a:1006244819642.
[7]
施政, 汪家社, 何容, 等. 武夷山不同海拔植被土壤呼吸季节变化及对温度的敏感性[J]. 应用生态学报, 2008, 19(11):2357-2363.
SHI Z, WANG J S, HE R, et al. Seasonal variation and temperature sensitivity of soil respiration under different plant communities along an elevation gradient in Wuyi Mountains of China[J]. Chinese Journal of Applied Ecology, 2008, 19(11):2357-2363. DOI: 10.13287/j.1001-9332.2008.0414.
[8]
苗方琴, 汪金松, 孙继超, 等. 太岳山油松天然林不同土层的碳氮转化速率[J]. 应用与环境生物学报, 2010, 16(4):519-522.
MIAO F Q, WANG J S, SUN J C, et al. Conversion rate of soil carbon and nitrogen in naturalPinus tabulaeformis forest on the Taiyue Mountains, China [J]. Chinese Journal of Applied & Environmental Biology, 2010, 16(4):519-522. DOI: 10.3724/SP.J.1145.2010.00519.
[9]
高文栋, 钟圣赟, 刘伟丰, 等. 吊罗山青皮林土壤硝化-反硝化作用及其影响因素[J]. 林业资源管理, 2014(5):69-73.
GAO W D, ZHONG S Y, LIU W F, et al. The intensity of soil nitrification-denitrification and its influence factors in Diaoluoshan Vatica mangachapoi forest [J]. Forest Resources Management, 2014(5):69-73. DOI: 10.13466/j.cnki.lyzygl.2014.05.013.
[10]
孙志高, 刘景双, 杨继松, 等. 三江平原典型小叶章湿地土壤硝化-反硝化作用与氧化亚氮排放[J]. 应用生态学报, 2007, 18(1):185-192.
SUN Z G, LIU J S, YANG J S, et al. Nitrification-denitrification and N2O emission of typical Calamagrostis angustifolia wetland soils in Sanjiang Plain [J]. Chinese Journal of Applied Ecology, 2007, 18(1):185-192. DOI: 10.13287/j.1001-9332.2007.0032.
[11]
刘巧辉, 黄耀, 郑循华. 基于BaPS系统的旱地土壤呼吸作用及其分量确定探讨[J]. 环境科学学报, 2005(8):1105-1111.
LIU Q H, HUANG Y, ZHENG X H. Determination of upland soil respiration and its components with BaPS system[J]. Acta Scientiae Circumstantiae, 2005, 25(8):1105-1111. DOI: 10.3321/j.issn:0253-2468.2005.08.019.
[12]
刘艳, 陈书涛, 刘燕, 等. 增温对农田土壤碳氮循环关键过程的影响[J]. 中国环境科学, 2013, 33(4):674-679.
LIU Y, CHEN S T, LIU Y, et al. Effects of simulated warming on the key processes of soil carbon and nitrogen cycling in a cropland[J]. China Environmental Science, 2013, 33(4):674-679. DOI: 10.3969/j.issn.1000-6923.2013.04.014.
[13]
刘巧辉. 应用BaPS系统研究旱地土壤硝化—反硝化过程和呼吸作用[D]. 南京: 南京农业大学, 2005.
LIU Q H. Using BaPS system to study upland soil nitrification-denitrification and respiration[D]. Nanjing: Nanjing Agricultural University, 2005.
[14]
刘方平, 柳根水, 许亚群, 等. 基于BaPS系统的棉花土壤硝化和反硝化作用分析[J]. 江西农业学报, 2011, 23(12):121-123.
LIU F P, LIU G S, XU Y Q, et al. Analysis of nitrification and denitrification in soil of cotton field based on BaPS system[J]. Acta Agriculturae Jiangxi, 2011, 23(12):121-123. DOI: 10.19386/j.cnki.jxnyxb.2011.12.036.
[15]
付素静. 干旱荒漠区典型土壤硝酸盐分布特征及硝化反硝化作用研究[D]. 兰州:兰州大学, 2012.
FU S J. Nitrification-Denitrification in the soils of desert areas, northwest China[D]. Lanzhou: Lanzhou University, 2012.
[16]
孙庚, 吴宁, 罗鹏. 不同管理措施对川西北草地土壤氮和碳特征的影响[J]. 植物生态学报, 2005, 29(2):304-310.
摘要
川西北地区是我国的主要牧区之一。草地承包后,草地建设中出现了各种草地经营管理方式——围栏、翻耕和完全的人工建设。采用常规化学分析和气压过程分离(Barometric Process Separation,BaPS)法,对不同类型草地(天然放牧草地、围栏草地、翻耕草地和人工草地)的土壤氮、碳库以及反硝化速率、总硝化速率、N2O和CO2排放速率进行了研究。结果表明:研究地点土壤有机质、全氮含量分别为101.8和5.1 g·kg–1,比典型的亚高山土壤有机质和全氮含量(分别是181.3和7.4 g·kg–1)明显低,而且,与通常的观念不同的是,土壤NO3–N含量是NH4+N含量的3~11倍。这可能是由于研究地过度的人为干扰造成的。研究还发现,不同管理措施对土壤氮、碳库,氮转化速率和土壤呼吸有显著影响。天然放牧草地围栏后,土壤有机质和全氮含量明显升高,比如,围栏草地和翻耕草地的有机质、全氮含量分别比天然放牧草地高61%、58%和46%、51%。氮转化速率和土壤呼吸大大加快,尤其是在翻耕草地,比如,翻耕草地的总硝化速率和N2O排放速率分别是天然放牧草地的5.1和2.4倍。因此,虽然春季翻耕可能提高作物(包括牧草)产量,但它同时也承担了巨大的生态学风险,包括增加排放到大气中的CO2 和 N2O的量以及淋溶到地下水的NO3–的量。因此,建议在川西北亚高山区的人工草地建设中慎重选择翻耕措施。研究还发现,研究地土壤的总硝化速率是净硝化速率的20~93倍,净硝化速率不能反映高海拔地区土壤硝化的准确状况。
SUN G, WU N, LUO P. Chara cteristics of soil nitrogen and carbon of pastures under different management in northwestern Sichuan[J]. Acta Phytoecologica Sinica, 2005, 29(2):304-310. DOI: 10.17521/cjpe.2005.0039.
[17]
邓小军, 曹继钊, 宋贤冲, 等. 猫儿山自然保护区3种森林类型土壤养分垂直分布特征[J]. 生态科学, 2014, 33(6):1129-1134.
DENG X J, CAO J Z, SONG X C, et al. Vertical distribution characteristics of three forest types’ soil properties on Mao’er Mountain Biosphere Reserve[J]. Ecological Science, 2014, 33(6):1129-1134. DOI: 10.14108/j.cnki.1008-8873.2014.06.015.
[18]
宋贤冲, 曹继钊, 唐健, 等. 猫儿山常绿阔叶林不同土层土壤微生物群落功能多样性[J]. 生态科学, 2015, 34(6):93-99.
SONG X C, CAO J Z, TANG J, et al. Soil microbial functional diversity of subtropical evergreen broad-leaved forest in Maoer Mountain[J]. Ecological Science, 2015, 34(6):93-99. DOI: 10.14108/j.cnki.1008-8873.2015.06.015.
[19]
黄金玲, 蒋得斌. 广西猫儿山自然保护区综合科学考察[M]. 长沙: 湖南科学技术出版社, 2010.
HUANG J L, JIANG D B. Integrated scientific investigation of Maoershan Natural Reserve of Guangxi[M]. Changsha: Hunan Science and Techonology Press, 2010.
[20]
中国林业科学研究院. 森林生态系统长期定位观测方法: LY/T 1952—2011[S]. 北京: 中国林业科学研究院, 2011.
CSFA. Observation methodology for long-term forest ecosystem research: LY/T 1952—2011[S]. Beijing: China State Forestry Administration, 2011.
[21]
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
LU R K. Methodology for soil agricultural chemical analysis[M]. Beijing: China Agriculture Science and Technique Press, 2000.
[22]
孙杰杰, 江波, 吴初平, 等. 浙江省檫木林生境与生态位研究[J]. 生态学报, 2019, 39(3):131-141.
SUN J J, JIANG B, WU C P, et al. Study on the habitat and niche of Sassafras tzumu (Hemsl.) Hemsl. in Zhejiang Province [J]. Acta Ecologica Sinica, 2019, 39(3):131-141. DOI: 10.5846/stxb201804030749.
[23]
RUSTAD L E, CRONAN C S. Element loss and retention during litter decay in a red spruce stand in Maine[J]. Canadian Journal Forest Research, 1988, 18(6):947-953. DOI: 10.1139/x88-144.
[24]
LI T, DI Z, HAN X, et al. Elevated CO2 improves root growth and cadmium accumulation in the hyperaccumulator Sedum alfredii[J]. Plant and Soil, 2012, 354(1/2):325-334. DOI: 10.1007/s11104-011-1068-4.
[25]
RAICH J W, TUFEKCIOGLU A, RUSTAD L E, et al. Vegetation and soil respiration: correlations and controls[J]. Biogeochemistry, 2000, 48(1):71-90. DOI: 10.1023/a:1006112000616.
[26]
LUKOW T, DIEKMANN H. Aerobic denitrification by a newly isolated heterotrophic bacterium strain TL1[J]. Biotechnology Letters, 1997, 19(11):1157-1159. DOI: 10.1023/A:1018465232392.
[27]
周立祥, 黄峰源, 王世梅. 好氧反硝化菌的分离及其在土壤氮素转化过程中的作用[J]. 土壤学报, 2006, 43(3):430-435.
ZHOU L X, HUANG F Y, WANG S M. Isolation of aerobic denitrifiers and their roles in soil nitrogen transformation[J]. Acta Pedologica Sinica, 2006, 43(3):430-435. DOI: 10.3321/j.issn:0564-3929.2006.03.011.
[28]
TIAN X F, HU H W, DING Q, et al. Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow[J]. Biology and Fertility of Soils, 2014, 50(4):703-713. DOI: 10.1007/s00374-013-0889-0.
[29]
WU Q, KNOWLES R, NIVEN D F. O2 regulation of denitrification in Flexibacter canadensis[J]. Canadian Journal of Microbiology, 1994, 40(11):916-921. DOI: 10.1139/m94-147.
[30]
DENMEAD O T, FRENEY J R, SIMPSON J R . Nitrous oxide emission during denitrification in a flooded Field1[J]. Soil Science Society of America Journal, 1979, 43(4):716. DOI: 10.2136/sssaj1979.03615995004300040017x.
[31]
吴鹏, 崔迎春, 杨婷, 等. 茂兰喀斯特森林主要演替群落土壤呼吸研究[J]. 南京林业大学学报(自然科学版), 2013, 37(4):57-62.
WU P, CUI Y C, YANG T, et al. Soil respiration of major successional communities in the Maolan Nature Reserve of Karst areas[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2013, 37(4):57-62. DOI: 10.3969/j.issn.1000-2006.2013.04.011.
[32]
牟守国. 温带阔叶林、针叶林和针阔混交林土壤呼吸的比较研究[J]. 土壤学报, 2004, 41(4):564-570.
MOU S G. Respiration of soils under temperate deciduous, coniferous and mixed forests[J]. Acta Pedologica Sinica, 2004, 41(4):564-570. DOI: 10.11766/trxb200307050411.
[33]
陈全胜, 李凌浩, 韩兴国, 等. 土壤呼吸对温度升高的适应[J]. 生态学报, 2004, 24(11):2649-2655.
CHEN Q S, LI L H, HAN X G, et al. Acclimatization of soil respiration to warming[J]. Acta Ecologica Sinica, 2004, 24(11):2649-2655. DOI: 10.3321/j.issn:1000-0933.2004.11.044.
[34]
SHAW M R, HARTE J. Control of litter decomposition in a subalpine meadow-sagebrush steppe ecotone under climate change[J]. Ecological Applications, 2001, 11(4):1206-1223. DOI: 10.2307/3061022.
[35]
MELILLO J M. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298(5601):2173-2176. DOI: 10.1126/science.1074153.
[36]
赵超, 彭赛, 阮宏华, 等. 氮沉降对土壤微生物影响的研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(3):149-155.
ZHAO C, PENG S, RUAN H H, et al. Effects of nitrogen deposition on soil microbes[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2015, 39(3):149-155. DOI: 10.3969/j.issn.1000-2006.2015.03.027.
[37]
ZHANG Z S, DONG X J, LIU Y B, et al. Soil oxidases recovered faster than hydrolases in a 50-year chronosequence of desert revegetation[J]. Plant and Soil, 2012, 358(1/2):275-287. DOI: 10.1007/s11104-012-1162-2.
[38]
SONG L, TIAN P, ZHANG J, et al. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China[J]. Science of The Total Environ, 2017, 609:1303-1311. DOI: 10.1016/j.scitotenv.2017.08.017.

基金

广西优良用材林资源培育重点实验室项目(2019-A-04-02)
广西优良用材林资源培育重点实验室项目(17-A-02-01)
广西创新驱动发展专项资金项目(桂科AA17204087-11)
广西科技基地和人才专项项目(桂科AD17129051)
广西林业科技项目(桂林科研[2015]40号)
广西林科院基金项目(林科201807)

编辑: 刘昌来

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1640 KB)

Accesses

Citation

Detail

段落导航
相关文章

/