氮磷肥对西南桦无性系生物量分配和根系形态的影响

刘士玲, 陈琳, 杨保国, 贾宏炎, 庞圣江, 张培, 王晖

南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (5) : 23-29.

PDF(1340 KB)
PDF(1340 KB)
南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (5) : 23-29. DOI: 10.3969/j.issn.1000-2006.201809018
研究论文

氮磷肥对西南桦无性系生物量分配和根系形态的影响

作者信息 +

Effects of nitrogen and phosphorus fertilization on biomass allocation and root morphology in Betula alnoides clones

Author information +
文章历史 +

摘要

【目的】西南桦(Betula alnoides)具有较高的经济价值和生态效益,是中国热带、亚热带地区重要的乡土速生阔叶树种。氮和磷的有效性和空间分布显著影响着植物生长和根系发育。笔者研究施肥对西南桦无性系生物量分配和根系形态的影响,筛选出优良西南桦无性系及适宜的施肥配方,为西南桦的科学培育提供参考。【方法】以西南桦4个无性系(编号分别为A5、FB4、FB4+、BY-1)组培苗为试验材料,采用完全随机区组设计,每个小区 25 株。设置氮(0、200、400 mg/株)和磷(0、70、140 mg/株)共9个组合处理,重复 3 次。以不施肥为对照。为防止苗木缺素,每株施钾量为332 mg。磷肥作为基肥一次性施入基质中,组培苗移栽成活1个月后,开始追施氮和钾肥,每次施肥间隔时间为7 d,共10次。最终苗木收获时,先分离出根系进行形态指标扫描,获得根长、根表面积、根体积和根平均直径,最后全株烘干用于测定各器官的生物量,比较不同施肥处理下西南桦无性系的生物量分配和根系形态差异。【结果】①不同无性系和施肥处理下西南桦幼苗的地上、地下和总生物量差异均达到显著水平,但无性系×施肥处理的交互作用不显著。施肥处理幼苗的地上、地下和总生物量较对照(不施肥)有明显的增幅。处理5(N 200 mg/株+P 70 mg/株)幼苗的地上、地下和总生物量最大,分别比其他施肥处理提高了11.27%~460.49%、7.14%~200.00%、10.57%~390.09%。进一步比较不同无性系,无性系FB4+的地上、地下和总生物量表现出明显的生长优势,分别是无性系A5、FB4和BY-1的1.14~1.21、1.22~1.31、1.15~1.22倍。②不同无性系和施肥处理下幼苗的根表面积、根平均直径和各根径等级细根的根长差异显著或极显著,且无性系×施肥处理的交互作用对根体积、根表面积、根平均直径和各根径等级细根(根径d>2 mm除外)的根长影响均极显著。施肥处理的幼苗根系形态参数均高于对照。在所有无性系中,处理5的根系形态参数均显著高于其他施肥处理,其根表面积、根平均直径、根体积和总根长,分别比其他施肥处理提高了0.77%~227.20%、2.13%~152.63%、0.60%~264.13%和4.53%~214.04%。进一步比较不同根径等级细根的根长,西南桦幼苗的小细根(0<d≤1 mm)、粗细根(1<d≤2 mm)和粗根(d>2 mm)的根长亦表现出处理5最大。无性系FB4+在处理5下的根系形态参数显著高于其他无性系和施肥组合。③总生物量与地上、地下生物量均呈极显著的正相关关系,这三者与根平均直径、总根长、根表面积、根体积亦分别表现为极显著的正相关关系。【结论】施肥显著促进了西南桦幼苗的生物量和根系生长发育,且存在无性系差异。综合幼苗的生物量和根系形态指标,认为西南桦无性系FB4+在处理5(N 200 mg/株+P 70 mg/株)条件下生长表现最优。

Abstract

【Objective】 Betula alnoides is a native, fast-growing, broad-leaved tree species found in the tropical and subtropical regions of China, and it has a high economic value and ecological benefits. The availability and spatial distribution of nitrogen (N) and phosphorus (P) significantly affect plant growth and root development. By studying the effect of fertilization on biomass allocation and root morphology in B. alnoides clones, the optimum B. alnoides clone and fertilization treatments were screened to provide scientific guidance for cultivating B. alnoides. 【Method】 Four B. alnoides clones (A5, FB4, FB4+ and BY-1) were selected as research materials, and a completely randomized experimental design was conducted with nine treatments including three N levels (0, 200 and 400 mg/seedling) and three P levels (0, 70 and 140 mg/seedling) with three replications and 25 plants for each subplot. To prevent nutrient deficiency in seedlings, 332 mg/seedling potassium (K) was applied. P fertilizer was supplied to the medium as a basal fertilizer. The application of N and K fertilizers was initiated at 1 month after seedling transplantation and was conducted at intervals of 7 days for a total of 10 times. When the seedlings were harvested, the roots were separated and scanned to measure morphological indexes (root length, surface area, volume and mean diameter). Finally, whole plants were dried to determine the biomass of each part, and the biomass allocation and root morphology of B. alonoides clones under different fertilization treatments were compared. 【Result】 ① The above-ground, below-ground and total biomass were significantly affected by fertilization treatment and differed according to clones, but they were not influenced by the interaction between clones and fertilization treatment. Compared with the control treatment, the fertilization treatment significantly increased the above-ground, below-ground, and total biomass. Regardless of the clone, treatment 5 (200 mg/seedling N+70 mg/seedling P) resulted in the highest biomass among all treatments, which was 11.27%-460.49%, 7.14%-200.00% and 10.57%-390.09% higher than the other treatments for above ground, below ground, and total biomass, respectively. On further comparing different clones, FB4+ showed obvious growth advantages, with an above ground, below ground, and total biomass of 1.14-1.21, 1.22-1.31 and 1.15-1.22 times than those of other clones (A5,FB4 and BY-1), respectively. ② The root surface area, mean diameter and total length were significantly different among different clones and fertilization treatments. Except the total length of roots with a diameter of <2 mm, the interaction effect between clones and fertilization treatment resulted in significant differences in terms of root volume, surface area, mean diameter and total length. The fertilization treatment improved root morphology compared with the control treatment. In all clones, treatment 5 resulted in superior root morphological indexes than the other treatments, with values 0.77%-227.20%, 2.13%-152.63%, 0.60%-264.13% and 4.53%-214.04% higher than those of root surface area, mean diameter, volume and total length, respectively. On further comparing the total lengths of fine roots of different diameters, treatment 5 also produced the longest thin fine roots (0 < diameter ≤ 1 mm), thick fine roots (1 < diameter ≤ 2 mm), and coarse roots (diameter>2 mm) in B. alnoides seedlings. The clone FB4+ under treatment 5 exhibited the optimum root morphology among all combinations of clones and fertilization treatment. ③ There were significant positive correlations among the above ground, below ground and total biomass. Further, these three measures of biomass were positively correlated with root mean diameter, total length, surface area and volume. 【Conclusion】 Fertilization significantly increased biomass and promoted root growth ofB. alnoides seedlings, although there were differences among clones. Based on biomass and root morphological indexes, clone FB4+ and treatment 5 (200 mg/seedling N+70 mg/seedling P) exhibited the optimum growth performance for this tree species.

关键词

西南桦 / 无性系 / / / 施肥 / 生物量分配 / 根系形态

Key words

Betula alnoides / clone / nitrogen / phosphorus / fertilization / biomass allocation / root morphology

引用本文

导出引用
刘士玲, 陈琳, 杨保国, . 氮磷肥对西南桦无性系生物量分配和根系形态的影响[J]. 南京林业大学学报(自然科学版). 2019, 43(5): 23-29 https://doi.org/10.3969/j.issn.1000-2006.201809018
LIU Shiling, CHEN Lin, YANG Baoguo, et al. Effects of nitrogen and phosphorus fertilization on biomass allocation and root morphology in Betula alnoides clones[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2019, 43(5): 23-29 https://doi.org/10.3969/j.issn.1000-2006.201809018
中图分类号: S723.7   

参考文献

[1]
HODGE A. The plastic plant: root responses to heterogeneous supplies of nutrients[J]. New Phytologist, 2004, 162(1):9-24.DOI: 10.1111/j.1469-8137.2004.01015.x.
[2]
VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource[J]. New Phytologist, 2003, 157(3):423-447. DOI: 10.1046/j.1469-8137.2003.00695.x.
[3]
VITOUSEK P. Nutrient cycling and nutrient use efficiency[J]. The American Naturalist, 1982, 119(4):553-572. DOI: 10.1086/283931.
[4]
邝雷, 邓小梅, 余斐, 等. 氮、磷、钾配比施肥对任豆容器苗生长的影响[J]. 华南农业大学学报, 2014, 35(6):79-82,88.DOI: 10.7671/j.issn.1001-411X.2014.06.015.
KUANG L, DENG X M, YU F, et al. Effects of fertilization on the growth of Zenia insignis container seedlings [J]. Journal of South China Agricultural University, 2014, 35(6):79-82.
[5]
徐福利, 赵亚芳, 张潘, 等. 施肥对华北落叶松人工林根茎叶中氮磷含量的影响[J]. 林业科学, 2014, 50(3):139-143.DOI: 10.11707/j.1001-7488.20140320.
XU F L, ZHAO Y F, ZHANG P, et al. Effects of fertilization on nitrogen and phosphorus content in roots,stems and leaves of Larix principis-rupprechtii plantation [J]. Scientia Silvae Sinicae, 2014, 50(3):139-143.
[6]
周玮, 周运超. 施肥对马尾松幼苗及根系生长的影响[J]. 南京林业大学学报(自然科学版), 2011, 35(3):13-17.DOI: 10.3969/j.issn.1000-2006.2011.03.014.
ZHOU W, ZHOU Y C. Effect on the growth of Pinus massoniana seedlings and root under different fertilizer treatments [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2011, 35(3):13-17.
[7]
王力朋, 晏紫伊, 李吉跃, 等. 指数施肥对楸树无性系生物量分配和根系形态的影响[J]. 生态学报, 2012, 32(23):7452-7462.DOI: 10.5846/stxb201203040288.
WANG L P, YAN Z Y, LI J Y, et al. Effects of exponential fertilization on biomass allocation and root morphology of Catalpa bungei clones [J]. Acta Ecologica Sinica, 2012, 32(23):7452-7462.
[8]
韦如萍, 胡德活, 陈金慧, 等. 低磷胁迫下杉木无性系根系形态及养分利用响应研究[J]. 南京林业大学学报(自然科学版), 2018, 42(2):1-8.DOI: 10.3969/j.issn.1000-2006.201704027.
WEI R P, HU D H, CHEN J H, et al. Response of roots morphological characteristics and nutrient utilization to low phosphorus stress among five clones of Cunninghamia lanceolate(Lamb.)Hook [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2018, 42(2):1-8.
[9]
宋平, 张蕊, 张一, 等. 模拟氮沉降对低磷胁迫下马尾松无性系细根形态和氮磷效率的影响[J]. 植物生态学报, 2016, 40(11):1136-1144.DOI: 10.17521/cjpe.2016.0109.
摘要
根系是植物吸收土壤营养的关键部位, 不同径级根系的形态和功能差异不仅与植株自身的遗传因素有关, 而且受到土壤中营养元素分布和水平的影响。在我国亚热带高氮沉降和酸性红壤磷匮乏及不均一的土壤环境下, 研究林木不同径级根系对外界营养环境变化的响应有利于深入了解林木根系的觅养机制及规律。该文以马尾松(Pinus massoniana)无性系19-5 (高磷效率)和21-3 (低磷效率)为材料, 在同质低磷和异质低磷两种盆栽处理下, 设置3个氮水平(对照、中氮和高氮)的模拟氮沉降实验。结果表明: 1)马尾松无性系苗木的生长受磷环境、氮水平和无性系三因素共同影响, 模拟氮沉降显著促进了异质低磷下马尾松苗高和整株干物质量的增加, 而在同质低磷下氮效应不显著; 在异质低磷、高氮下, 无性系19-5的苗高和整株干物质量分别是无性系21-3的1.1倍和1.6倍。2)马尾松各径级细根长度和表面积随径级增大而减小, 模拟氮沉降促进了直径&#x02264;1.5 mm的细根的增生发育, 直径1.5-2.0 mm的细根和&#x0003E;2.0 mm的较粗根无明显变化; 另外, 直径&#x02264;1.5 mm的细根长度占总根长的比例保持在90.4%-92.8%范围内, 受氮影响较小。3)模拟氮沉降显著提高了异质低磷下无性系19-5&#x02264;1.5 mm的细根长度和表面积, 同时, 其根系氮、磷吸收效率较对照分别高出93.3%和148.4%; 无性系21-3的根系氮、磷吸收效率受氮影响较小; 根系氮、磷利用效率均无显著变化。上述结果表明, &#x02264;1.5 mm的细根的增生发育和氮、磷吸收效率的提高可能是磷高效马尾松无性系应对高氮低磷环境的重要响应机制。
SONG P, ZHANG R, ZHANG Y, et al. Effects of simulated nitrogen deposition on fine root morphology,nitrogen and phosphorus efficiency of Pinus massoniana clone under phosphorus deficiency [J]. Chinese Journal of Plant Ecology, 2016, 40(11):1136-1144.
[10]
蒋云东, 王达明, 邱琼, 等. 7种热带阔叶树种的苗木施肥试验[J]. 云南林业科技, 2003(2):11-16.DOI: 10.16473/j.cnki.xblykx1972.2003.02.004.
JIANG Y D, WANG D M, QIU Q, et al. Fertilization experiment on young plants of seven broad-leaved tree species indigenous to tropical areas[J]. Yunnan Forestry Science and Technology, 2003(2):11-16.
[11]
郑海水, 杨斌, 傅强, 等. 不同施肥措施对西南桦幼林生长的影响[J]. 西部林业科学, 2007, 36(3):1-6. DOI: 10.16473/j.cnki.xblykx1972.2007.03.004.
ZHENG H S, YANG B, FU Q, et al. Effect of different fertilization treatments on sapling growth of Betula alnoides [J]. Journal of West China Forestry Science, 2007, 36(3):1-6.
[12]
陈琳, 曾杰, 徐大平, 等. 氮素营养对西南桦幼苗生长及叶片养分状况的影响[J]. 林业科学, 2010, 46(5):35-40.DOI: 10.11707/j.1001-7488.20100506.
CHEN L, ZENG J, XU D P, et al. Effects of exponential nitrogen loading on growth and foliar nutrient status of Betula alnoides seedlings [J]. Scientia Silvae Sinicae, 2010, 46(5):35-40.
[13]
CHEN L, JIA H Y, ZENG J, et al. Growth and nutrient efficiency of Betula alnoides clones in response to phosphorus supply[J]. Annals of Forest Research, 2016, 59(2):199-207.DOI: 10.15287/afr.2016.561.
[14]
李化山, 汪金松, 法蕾, 等. 模拟氮沉降对油松幼苗生长的影响[J]. 应用与环境生物学报, 2013, 19(5):774-780.DOI: 10.3724/SP.J.1145.2013.00774.
LI H S, WANG J S, FA L, et al. Effects of simulated nitrogen deposition on seedling growth of Pinus tabulaeformis [J]. Chinese Journal of Applied and Environmental Biology, 2013, 19(5):774-780.
[15]
REICH P B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(30):11001-11006.DOI: 10.1073/pnas.0403588101.
[16]
CHEN L, JIA H Y, DELL B, et al. Responses of Castanopsis hystrix seedlings to macronutrient imbalances: growth,photosynthetic pigments and foliar nutrient interactions[J]. Journal of Plant Nutrition, 2016, 39(12):1663-1671.DOI: 10.1080/01904167.2016.1161784.
[17]
LI J Y, GUO Q X, ZHANG J X, et al. Effects of nitrogen and phosphorus supply on growth and physiological traits of two Larix species[J]. Environmental and Experimental Botany, 2016, 130:206-215.DOI: 10.1016/j.envexpbot.2016.06.006.
[18]
STUDER C, HU Y C, SCHMIDHALTER U. Interactive Effects of N-, P-and K-nutrition and drought stress on the development of maize seedlings[J]. Agriculture, 2017, 7(11):90-102.DOI: 10.3390/agriculture7110090.
[19]
王益明, 李瑞瑞, 张慧, 等. 指数施肥对美国山核桃幼苗生物量及氮积累的影响[J]. 生态学杂志, 2018, 37(10):2920-2926.DOI: 10.13292/j.1000-4890.201810.028.
WANG Y M, LI R R, ZHANG H, et al. Effects of exponential fertilization on biomass and nitrogen accumulation of Carya illinoensis seedlings [J]. Chinese Journal of Ecology, 2018, 37(10):2920-2926.
[20]
WANG J R, HAWKINS C D B, LETCHFORD T. Relative growth rate and biomass allocation of paper birch (Betula papyrifera) populations under different soil moisture and nutrient regimes[J]. Canadian Journal of Forest Research, 1998, 28(1):44-55.DOI: 10.1139/cjfr-28-1-44.
[21]
DENG S X, SHI K K, MA J, et al. Effects of fertilization ratios and frequencies on the growth and nutrient uptake of Magnolia wufengensis (Magnoliaceae)[J]. Forests, 2019, 10(1):65-94.DOI: 10.3390/f10010065.
[22]
TRESEDER K K, VITOUSEK P M. Effects of soil nutrient availability on investment in acquisition of N and P in hawaiian rain forests[J]. Ecology, 2001, 82(4):946-954.DOI: 10.2307/2679894.
[23]
GÜSEWELL S. Responses of wetland graminoids to the relative supply of nitrogen and phosphorus[J]. Plant Ecology, 2005, 176(1):35-55.DOI: 10.1007/s11258-004-0010-8.
[24]
白晶晶, 吴俊文, 何茜, 等. 不同配方施肥对楸树幼苗生物量分配及养分利用的影响[J]. 华南农业大学学报, 2015, 36(6):91-97.DOI: 10.7671/j.issn.1001-411X.2015.06.015.
BAI J J, WU J W, HE Q, et al. Effects of different fertilization formulas on Catalpa bungei seedling biomass allocation and nutrient use efficiency [J]. Journal of South China Agricultural University, 2015, 36(6):91-97.
[25]
MANTER D K, KAVANAGH K L, ROSE C L. Growth response of Douglas-fir seedlings to nitrogen fertilization:importance of Rubisco activation state and respiration rates[J]. Tree Physiology, 2005, 25(8):1015-1021.DOI: 10.1093/treephys/25.8.1015.
[26]
PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine north american trees[J]. Ecological Monographs, 2002, 72(2):293-309.DOI: 10.2307/3100029.
[27]
EINSMANN J C, JONES R H, PU M, et al. Nutrient foraging traits in 10 co-occurring plant species of contrasting life forms[J]. Journal of Ecology, 1999, 87(4):609-619.DOI: 10.1046/j.1365-2745.1999.00376.x.
[28]
CAO P, REN Y Z, ZHANG K P, et al. Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat[J]. Molecular Breeding, 2014, 33(4):975-985. DOI: 10.1007/s11032-013-0013-z.
[29]
刘莹, 王国梁, 刘国彬, 等. 不同分类系统下油松幼苗根系特征的差异与联系[J]. 植物生态学报, 2010, 34(12):1386-1393.DOI: 10.3773/j.issn.1005-264x.2010.12.004.
LIU Y, WANG G L, LIU G B, et al. Difference and inherent linkage of root characteristics in different root classification of Pinus tabulaeformis seedlings [J]. Chinese Journal of Plant Ecology, 2010, 34(12):1386-1393.
[30]
TATENO R, HISHI T, TAKEDA H. Above-and belowground biomass and net primary production in a cool-temperate deciduous forest in relation to topographical changes in soil nitrogen[J]. Forest Ecology Management, 2004, 193(3):297-306.DOI: 10.1016/j.foreco.2003.11.011.

基金

国家重点研发计划(2016YFD0600604-01)

编辑: 王国栋

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1340 KB)

Accesses

Citation

Detail

段落导航
相关文章

/