[1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 1689-1692. Ministry of Environmental Protection, Ministry of Land and Resources. Bulletin of national soil pollution survey [J]. China Environmental Protection Industry, 2014, 36(5): 1689-1692. [2] 庞荣丽, 王瑞萍, 谢汉忠, 等. 农业土壤中镉污染现状及污染途径分析[J]. 天津农业科学, 2016, 22(12): 87-91. DOI:10.3969/j.issn.1006-6500.2016.12.023. PANG R L, WANG R P, XIE H Z, et al. Analysis of cadmium pollution in agricultural soils and analysis of its way of pollution[J]. Tianjin Agricultural Sciences, 2016, 22(12): 87-91. [3] GALLEGO S M, PENA L B, BARCIA R A, et al. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms[J]. Environmentaland Experimental Botany, 2012, 83: 33-46. DOI:10.1016/j.envexpbot.2012.04.006. [4] 魏树和, 周启星, 王新, 等. 超积累植物龙葵及其对镉的富集特征[J]. 环境科学, 2005, 26(3): 167-171. DOI:10.3321/j.issn:0250-3301.2005.03.034. WEI S H, ZHOU Q X, WANG X, et al. Cadmium-hyperaccumulator Solanum nigrum L. and its accumulating characteristics[J]. Chinese Journal of Environmental Science, 2005, 26(3): 167-171. [5] 刘周莉, 何兴元, 陈玮. 忍冬: 一种新发现的镉超富集植物[J]. 生态环境学报, 2013, 22(4): 666-670. DOI:10.16258/j.cnki.1674-5906.2013.04.025. LIU Z L, HE X Y, CHEN W. Lonicera japonica Thunb.: a newly discovered Cd hyper-accumulator[J]. Ecology and Environmental Sciences, 2013, 22(4): 666-670. [6] 刘威, 束文圣, 蓝崇钰. 宝山堇菜(Viola baoshanensis): 一种新的镉超富集植物[J]. 科学通报, 2003, 48(19): 2046-2049. DOI:10.3321/j.issn:0023-074X.2003.19.009. LIU W, SHU W S, LAN C Y. Viola baoshanensis: a new Cd hyper-accumulator [J]. Chinese Science Bulletin, 2003, 48(19): 2046-2049. [7] KüPPER H, LOMBI E, ZHAO F J, et al. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri[J]. Planta, 2000, 212(1): 75-84. DOI:10.1007/s004250000366. [8] 韦朝阳, 陈同斌. 重金属污染植物修复技术的研究与应用现状[J]. 地球科学进展, 2002, 17(6): 833-839. DOI:10.3321/j.issn:1001-8166.2002.06.006. WEI Z Y, CHEN T B. An pverview on the status of research and application of heavy metal phytormediation[J]. Advance in Earth Sciences, 2002, 17(6): 833-839. [9] 安婧, 宫晓双, 魏树和. 重金属污染土壤超积累植物修复关键技术的发展[J]. 生态学杂志, 2015, 34(11): 3261-3270. DOI:10.13292/j.1000-4890.20151023.025. AN J, GONG X S, WEI S H. Research progress on technologies of phytoremediation of heavy metal contaminated soils[J]. Chinese Journal of Ecology, 2015, 34(11): 3261-3270. [10] LUO Z B, HE J L, POLLE A, et al. Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency[J]. Biotechnology Advances, 2016, 34(6): 1131-1148. DOI:10.1016/j.biotechadv.2016.07.003. [11] OONO Y, YAZAWA T, KAWAHARA Y, et al. Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice[J]. PLoS One, 2014, 9(5): e96946. DOI:10.1371/journal.pone.0096946. [12] YUAN J B, BAI Y Q, CHAO Y H, et al. Genome-wide analysis reveals four key transcription factors associated with cadmium stress in creeping bentgrass(Agrostis stolonifera L.)[J]. Peer J, 2018, 6: e5191. DOI:10.7717/peerj.5191. [13] FARINATI S, DALCORSO G, VAROTTO S, et al. The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants[J]. The New Phytologist, 2010, 185(4): 964-978. DOI:10.1111/j.1469-8137.2009.03132.x. [14] TANG W, CHARLES T M, NEWTON R J. Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine(Pinus virginiana Mill.)confers multiple stress tolerance and enhances organ growth[J]. Plant Molecular Biology, 2005, 59(4): 603-617. DOI:10.1007/s11103-005-0451-z. [15] üLKER B, SOMSSICH I E. WRKY transcription factors: from DNA binding towards biological function[J]. Current Opinion in Plant Biology, 2004, 7(5): 491-498. DOI:10.1016/j.pbi.2004.07.012. [16] CHEN L G, SONG Y, LI S J, et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms, 2012, 1819(2): 120-128. DOI:10.1016/j.bbagrm.2011.09.002. [17] SONG Y, JING S J, YU D Q. Overexpression of the stress-induced OsWRKY08 improves osmotic stress tolerance in Arabidopsis[J]. Chinese Science Bulletin, 2009, 54(24): 4671-4678. DOI:10.1007/s11434-009-0710-5. [18] LEE H, CHA J, CHOI C, et al. Rice WRKY11 plays a role in pathogen defense and drought tolerance[J]. Rice, 2018, 11(1): 1-12. DOI:10.1186/s12284-018-0199-0. [19] YOKOTANI N, SATO Y, TANABE S, et al. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance[J]. Journal of Experimental Botany, 2013, 64(16): 5085-5097. DOI:10.1093/jxb/ert298. [20] GU L, WEI H, WANG H, et al. Characterization and functional analysis of GhWRKY42, a group IId WRKY gene, in upland cotton(Gossypium hirsutum L.)[J]. Bmc Genetics, 2018, 19(1): 48. DOI: 10.1186/s12863-018-0653-4. [21] ZHANG L L, CHENG J, SUN X M, et al. Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes[J]. Plant Cell Reports, 2018. DOI: 10.1007/s00299-018-2302-9. [22] MZID R, ZORRIG W, BEN AYED R, et al. The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in transgenic Nicotiana tabacum[J]. Biotech, 2018, 8(6): 1-15. DOI:10.1007/s13205-018-1301-4. [23] HE L, WU Y H, ZHAO Q, et al. Chrysanthemum DgWRKY2 gene enhances tolerance to salt stress in transgenic chrysanthemum[J]. International Journal of Molecular Sciences, 2018, 19(7): E2062. DOI:10.3390/ijms19072062. [24] VANDERAUWERA S, VANDENBROUCKE K, INZE A, et al. AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2012, 109(49): 20113-20118. DOI:10.1073/pnas.1217516109. [25] ALI M A, AZEEM F, NAWAZ M A, et al. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis[J]. Journal of Plant Physiology, 2018, 226: 12-21. DOI:10.1016/j.jplph.2018.04.007. [26] 彭喜旭, 白宁宁, 王海华. 响应镉胁迫的水稻WRKY15转录因子基因的分离与表达特征[J]. 中国水稻科学, 2018, 32(2): 103-110. DOI: 10.16819/j.1001-7216.2018.7056. PENG X X, BAI N N, WANG H H. Isolation and expression profiles of cadmium stress-responsive rice WRKY15 transcription factor gene[J]. Chinese Journal of Rice Science, 2018, 32(2): 103-110. [27] LIU Z Q, FANG H H, PEI Y X, et al. WRKY transcription factors down-regulate the expression of H2S-generating genes, LCD and DES in Arabidopsis thaliana[J]. Science Bulletin, 2015, 60(11): 995-1001. DOI:10.1007/s11434-015-0787-y. [28] 汪祖昊. 地理隔离与重金属污染对东南景天物种分化的影响[D]. 广州: 中山大学, 2009. WANG Z H. The effects of geographic isolation and heavy metal contamination on the speciation of Sedum alfredii[D]. Guangzhou: Sun Yat-sen University, 2009. [29] 吴龙华, 周守标, 毕德, 等. 中国景天科植物一新种: 伴矿景天[J]. 土壤, 2006, 38(5): 632-633. DOI:10.3321/j.issn:0253-9829.2006.05.022. WU L H, ZHOU S B, BI D, et al. Sedum plumbizincicola, a new species of the crassulaceae from Zhejiang, China[J]. Soils, 2006, 38(5): 632-633. [30] WU L H, LIU Y J, ZHOU S B, et al. Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. wu(crassulaceae): a new species from Zhejiang Province, China[J]. Plant Systematics and Evolution, 2013, 299(3): 487-498. DOI:10.1007/s00606-012-0738-x. [31] YANG X E, LONG X X, YE H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species(Sedum alfredii Hance)[J]. Plant and Soil, 2004, 259(1/2): 181-189. DOI:10.1023/b:plso.0000020956.24027.f2. [32] ZHANG M, ZHANG J, LU L L, et al. Functional analysis of CAX2-like transporters isolated from two ecotypes of Sedum alfredii[J]. Biologia Plantarum, 2016, 60(1): 37-47. DOI:10.1007/s10535-015-0557-3. [33] ZHANG J, ZHANG M, TIAN S K, et al. Metallothionein 2(SaMT2)from Sedum alfredii Hance confers increased Cd tolerance and accumulation in yeast and tobacco[J]. PLoS One, 2014, 9(7): e102750. DOI:10.1371/journal.pone.0102750. [34] LIU H, ZHAO H, WU L, et al. Heavy metal ATPase 3(HMA3)confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola[J]. New Phytologist, 2017, 215(2): 687-698. DOI: 10.1111/nph.14622. [35] ZHANG M, SENOURA T, YANG X E, et al. Functional analysis of metal tolerance proteins isolated from Zn/Cd-hyperaccumulating ecotype and non-hyperaccumulating ecotype of Sedum alfredii Hance[J]. FEBS Letters, 2011, 585(16): 2604-2609. DOI:10.1016/j.febslet.2011.07.013. [36] LIU M Y, QIU W M, HE X L, et al. Functional characterization of a gene in Sedum alfredii Hance resembling rubber elongation factor endowed with functions associated with cadmium tolerance[J]. Frontiers in Plant Science, 2016, 7: 965. DOI:10.3389/fpls.2016.00965. [37] LI Z, HAN X J, SONG X X, et al. Overexpressing the Sedum alfredii Cu/Zn superoxide dismutase increased resistance to oxidative stress in transgenic Arabidopsis[J]. Frontiers in Plant Science, 2017, 8: 1010. DOI:10.3389/fpls.2017.01010. [38] 赵婷. 东南景天耐镉相关基因SaLRR的克隆与功能初步分析[D]. 乌鲁木齐: 新疆大学, 2014. ZHAO T. Cloning and molecular characterization of SaLRR gene in Sedum alfredii Hance[D]. Wulumuqi: Xinjiang University, 2014. [39] CHEN S S, HAN X J, FANG J, et al. Sedum alfredii SaNramp6 metal transporter contributes to cadmium accumulation in transgenic Arabidopsis thaliana[J]. Scientific Reports, 2017, 7: 13318. DOI:10.1038/s41598-017-13463-4. [40] ZHANG J, ZHANG M, SHOHAG M J I, et al. Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance[J]. Planta, 2016, 243(3): 577-589. DOI:10.1007/s00425-015-2429-7. [41] 刘明英, 乔桂荣, 蒋晶, 等. 矿山型东南景天cDNA表达文库构建与耐镉基因筛选[J]. 林业科学研究, 2012, 25(3): 332-338. DOI:10.3969/j.issn.1001-1498.2012.03.010. LIU M Y, QIAO G R, JIANG J, et al. Construction of stress induced full length cDNA library of Sedum alfredii and isolation of genes related to cd-tolerance[J]. Forest Research, 2012, 25(3): 332-338. [42] HAN X, YIN H, SONG X. Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation[J]. Plant Biotechnology Journal, 2016, 14(6):1470-1483. DOI: 10.1111/pbi.12512. [43] YOO S D, CHO Y H, SHEEN J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis[J]. Nature Protocols, 2007, 2(7): 1565-1572. DOI: 10.1038/nprot.2007.199. [44] SANG J, HAN X J, LIU M Y, et al. Selection and validation of reference genes for real-time quantitative PCR in hyperaccumula-ting ecotype of Sedum alfredii under different heavy metals stresses[J]. PLoS One, 2013, 8(12): 82927. DOI:10.1371/journal.pone.0082927. [45] EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5): 199-206. DOI:10.1016/s1360-1385(00)01600-9. [46] PARK C Y, LEE J H, YOO J H, et al. WRKY group IId transcription factors interact with calmodulin[J]. FEBS Letters, 2005, 579(6): 1545-1550. DOI:10.1016/j.febslet.2005.01.057. [47] LU L L, TIAN S K, ZHANG M, et al. The role of Ca pathway in Cd uptake and translocation by the hyperaccumulator Sedum alfredii[J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 22-28. DOI:10.1016/j.jhazmat.2010.06.036. [48] 廖星程. 东南景天对镉的细胞吸收与积累特征及其与钙的关系[D]. 杭州: 浙江大学, 2015. LIAO X C. Cadium uptake and accumulation in Sedum alfredii at cellular levels and its association with calcium pathyway[D]. Hangzhou: Zhejiang University, 2015. [49] SUN J, AN H, SHI W, et al. Molecular cloning and characterization of GhWRKY11, a gene implicated in pathogen responses from cotton[J]. South African Journal of Botany, 2012, 81: 113-123. DOI:10.1016/j.sajb.2012.06.005. [50] 向小华, 吴新儒, 晁江涛, 等. 普通烟草WRKY基因家族的鉴定及表达分析[J]. 遗传, 2016, 38(9): 840-862. DOI:10.16288/j.yczz.16-016. XIANG X H, WU X R, CHAO J T, et al. Genome-wide identification and expression analysis of the WRKY gene family in common tobacco(Nicotiana tabacum L.)[J]. Hereditas, 2016, 38(9): 840-862. [51] XU Z L, RAZA Q, XU L, et al. GmWRKY49, a salt-responsive nuclear protein, improved root length and governed better salinity tolerance in transgenic Arabidopsis[J]. Frontiers in Plant Science, 2018, 9: 809. DOI:10.3389/fpls.2018.00809. [52] 倪志勇, 加得拉·吐留汗, 邱迎风,等. 海岛棉GbWRKY40基因的克隆及特征分析[J]. 棉花学报, 2017, 29(4): 393-400. DOI: 10.11963/1002-7807. nzycqj.20170601. NI Z Y, GARDELA T, QIU Y F, et al. Cloning and characterization of the GbWRKY40 transcription factor gene from Gossypium barbadense L.[J]. Cotton Science, 2017, 29(4): 393-400. [53] ZHOU Q Y, TIAN A G, ZOU H F, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal, 2008, 6(5): 486-503. DOI:10.1111/j.1467-7652.2008.00336.x. [54] MUHAMMAD A J. CmWRKY4, CmWRKY10 and CmWRKY11 contribute to drought tolerance in chrysanthemum[D]. Nanjing: Nanjing Agricultural University, 2016. [55] 蔡荣号. 玉米WRKY转录因子IId亚族抗逆相关基因的鉴定及ZmWRKY17的功能分析[D]. 合肥:安徽农业大学, 2016. CAI R H. Identification of stress-resistant related genes of group IId WRKY transcription factor family in maize and function analysis of ZmWRKY17[D]. Hefei:Anhui Agricultural University, 2016. [56] 司爱君, 余渝, 陈红,等. 棉花逆境应答GhWRKY2基因的结构与功能预测[J]. 农业生物技术学报, 2017, 25(2):222-230. DOI:10.3969/j.issn. 1674-7968.2017.02.006. SI A J, YU Y, CHEN H, et al. Functional prediction of stress response GhWRKY2 gene in cotton(Gossypium hirsutum)[J].Journal of Agricultural Biotechnology, 2017, 25(2):222-230. [57] 王玲,刘峰,戴明剑,等. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379. WANG L, LIU F, DAI M J, et al. Cloning and expression characteristic analysis of ScWRKY4 gene in sugarcane[J]. Acta Agronomica Sinica, 2018, 44(9): 1367-1379. [58] BAO W, WANG X, CHEN M, et al. A WRKY transcription factor, PcWRKY33, from Polygonum cuspidatum reduces salt tolerance in transgenic Arabidopsis thaliana[J]. Plant Cell Reports, 2018, 37(7): 1033-1048. DOI: 10.1007/s00299-018-2289-2. |