[1] |
ROOT T L, PRICE J T, HALL K R, et al. Fingerprints of globalwarming on wild animals and plants[J]. Nature, 2003, 421(6918):57-60. DOI: 10.1038/nature01333.
doi: 10.1038/nature01333
|
[2] |
DAVIS M B, SHAW R G. Range shifts and adaptive responses to Quaternary climate change[J]. Science, 2001, 292(5517):673-679. DOI: 10.1126/science.292.5517.673.
doi: 10.1126/science.292.5517.673
|
[3] |
JUMP A S, PEÑUELAS J. Running to stand still: adaptation and the response of plants to rapid climate change[J]. Ecology Letters, 2005, 8(9):1010-1020. DOI: 10.1111/j.1461-0248.2005.00796.x.
doi: 10.1111/ele.2005.8.issue-9
|
[4] |
SAVOLAINEN O, LASCOUX M, MERILÄ J. Ecological genomics of local adaptation[J]. Nature Reviews Genetics, 2013, 14(11):807-820. DOI: 10.1038/nrg3522.
doi: 10.1038/nrg3522
|
[5] |
DELPH L F. The study of local adaptation: a thriving field of research[J]. Journal of Heredity, 2018, 109(1):1-2. DOI: 10.1093/jhered/esx099.
doi: 10.1093/jhered/esx099
|
[6] |
CSILLÉRY K, LALAGÜE H, VENDRAMIN G G. Detecting short spatial scale local adaptation andepistatic selection in climate-related candidate genes in European beech (Fagus sylvatica) populations[J]. Molecular Ecology, 2014, 23(19):4696-4708. DOI: 10.1111/mec.12902.
doi: 10.1111/mec.12902
|
[7] |
AITKEN SN, YEAMAN S, HOLLIDAY J A, et al. Adaptation, migration orextirpation: climate change outcomes for tree populations[J]. Evolutionary Applications, 2008, 1(1), 95-111. DOI: 10.1111/j.1752-4571.2007.00013.x.
doi: 10.1111/j.1752-4571.2007.00013.x
|
[8] |
SAVOLAINEN O, PYHÄJÄRVI T, KNÜRR T. Gene flow and local adaptation in trees[J]. Annual Review of Ecology, Evolution, and Systematics, 2007, 38:595-619. DOI: 10.1146/annurev.ecolsys.38.091206.095646.
doi: 10.1146/annurev.ecolsys.38.091206.095646
|
[9] |
KAWECKI T J, EBERT D. Conceptual issues in local adaptation[J]. Ecology Letters, 2004, 7(12):1225-1241. DOI: 10.1111/j.1461-0248.2004.00684.x.
doi: 10.1111/ele.2004.7.issue-12
|
[10] |
GIENAPP P, TEPLITSKY C, ALHO J S, et al. Climate change and evolution: disentangling environmental and genetic responses[J]. Molecular Ecology, 2008, 17(1):167-178. DOI: 10.1111/j.1365-294X.2007.03413.x.
doi: 10.1111/mec.2008.17.issue-1
|
[11] |
BRADBURY D, SMITHSON A, KRAUSS S L. Signatures of diversifying selection at EST-SSR loci and association with climate in naturalEucalyptus populations[J]. Molecular Ecology, 2013, 22(20):5112-5129. DOI: 10.1111/mec.12463.
doi: 10.1111/mec.12463
|
[12] |
SONG Z, ZHANG M, LI F, et al. Genome scans for divergent selection in natural populations of the widespread hardwood species Eucalyptus grandis ( Myrtaceae) using microsatellites[J]. Scientific Reports, 6:34941. DOI: 10.1038/srep34941.
doi: 10.1038/srep34941
|
[13] |
LIND B M, MENON M, BOLTE C E, et al. The genomics of local adaptation in trees: are we out of the woods yet[J]. Tree Genetics & Genomes, 2018, 14(2):29. DOI: 10.1007/s11295-017-1224-y.
|
[14] |
BROOKER M I H. A new classification of the genus Eucalyptus L’Hér.(Myrtaceae)[J]. Australian Systematic Botany, 2000, 13(1):79-148. DOI: 10.1071/SB98008.
doi: 10.1071/SB98008
|
[15] |
TURNBULL J. Geographical variation in Eucalyptus cloeziana F. Muell.[D]. Canberra: Australian National University, 1979.
|
[16] |
NGUGI M R, DOLEY D, HUNT MA, et al. Physiological responses to water stress in Eucalyptus cloeziana and E. argophloia seedlings[J]. Trees, 2004, 18(4):381-389. DOI: 10.1007/s00468-003-0316-5.
|
[17] |
LI C, WENG Q, CHEN J, et al. Genetic parameters for growth and wood mechanical properties inEucalyptus cloeziana F. Muell.[J]. New Forests, 48(1):33-49. DOI: 10.1007/s11056-016-9554-4.
|
[18] |
宋志姣, 杨合宇, 翁启杰, 等. 细叶桉群体的遗传多样性和受选择位点[J]. 林业科学, 2016, 52(9):39-47. DOI: 10.11707/j.1001-7488.20160905.
|
|
SONG Z J, YANG H Y, WENG Q J, et al. Genetic diversity and selective loci in Eucalyptus tereticornis populations [J]. Scientia Silvae Sinicae, 2016, 52(9):39-47.
|
[19] |
BRONDANI R P V, WILLIAMS E R, BRONDANI C, et al. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus[J]. BMC Plant Biology, 2006, 6:20. DOI: 10.1186/1471-2229-6-20.
doi: 10.1186/1471-2229-6-20
|
[20] |
周长品, 李发根, 翁启杰, 等. PCR产物直接测序和混合克隆测序进行桉树EST-SSR标记开发[J]. 分子植物育种(网络版), 2010, 8(1):e1. DOI: 10.5376/mpb.cn.2010.08.0001.
|
|
ZHOU C P, LI F G, WENG Q J, et al. Comparison between direct sequencing and pool-cloning-based sequencing of PCR products in EST-SSR marker development in Eucalyptus [J]. Molecular Plant Breeding (online), 2010, 8(1):e1.
|
[21] |
HE X, WANG Y, LI F, et al. Development of 198 novel EST-derived microsatellites in Eucalyptus (Myrtaceae)[J]. American Journal of Botany, 2012, 99(4):e134-e148. DOI: 10.3732/ajb.1100442.
doi: 10.3732/ajb.1100442
|
[22] |
ZHOU C, HE X, LI F, et al. Development of 240 novel EST-SSRs in Eucalyptus L’Hérit.[J]. Molecular Breeding, 2014, 33(1):221-225. DOI: 10.1007/s11032-013-9923-z.
doi: 10.1007/s11032-013-9923-z
|
[23] |
LI F, GAN S. An optimised protocol for fluorescent-dUTP based SSR genotyping and its application to genetic mapping in Eucalyptus[J]. Silvae Genetica, 2011, 60(1):18-25.
doi: 10.1515/sg-2011-0003
|
[24] |
PEAKALL R, SMOUSE P. GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research[J]. Molecular Ecology Notes, 2006, 6(1):288-295. DOI: 10.1111/j.1471-8286.2005.01155.x.
doi: 10.1111/men.2006.6.issue-1
|
[25] |
HIJMANS R J, CAMERSON S E, PARRA J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25(15):1965-1978. DOI: 10.1002/joc.1276.
doi: 10.1002/(ISSN)1097-0088
|
[26] |
ANTAO T, LOPES A, LOPES R J, et al. LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method[J]. BMC Bioinformatics, 2008, 9(1):323. DOI: 10.1186/1471-2105-9-323.
doi: 10.1186/1471-2105-9-323
|
[27] |
EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3):564-567. DOI: 10.1111/j.1755-0998.2010.02847.x.
doi: 10.1111/men.2010.10.issue-3
|
[28] |
FOLL M, GAGGIOTTI O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective[J]. Genetics, 2008, 180(2):977-993. DOI: 10.1534/genetics.108.092221.
doi: 10.1534/genetics.108.092221
|
[29] |
STUCKI S, OROZCO-TERWENGEL P, FORESTER B R, et al. High performance computation of landscape genomic models including local indicators of spatial association[J]. Molecular Ecology Resources, 2017, 17(5):1072-1089. DOI: 10.1111/1755-0998.12629.
doi: 10.1111/men.2017.17.issue-5
|
[30] |
王莉, 李昌荣, 李发根, 等. 大花序桉SSR位点多样性和群体结构分析[J]. 分子植物育种, 2019, 17(13):4470-4478. DOI: 10.13271/j.mpb.017.004470.
|
|
WANG L, LI C R, LI F G, et al. SSR marker diversity and population structure in Eucalyptus cloeziana [J]. Molecular Plant Breeding, 2019, 17(13):4470-4478.
|
[31] |
HILL R S. Origins of the southeastern Australian vegetation[J]. Philosophical Transactions of the Royal Society B. Biological Science, 2004, 359(1450):1537-1549. DOI: 10.1098/rstb.2004.1526.
doi: 10.1098/rstb.2004.1526
|
[32] |
SHEPHERD M, SEXTON T R, THOMAS D, et al. Geographical and historical determinants of SSR variation in Eucalyptus pilularis[J]. Canadian Journal of Forest Research, 2010, 359(1450):1537-1549. DOI: 10.1139/X10-049.
|
[33] |
PRUNIER J, LAROCHE J, BEAULIEU J, et al. Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce[J]. Molecular Ecology, 2011, 20(8):1702-1716. DOI: 10.1111/j.1365-294X.2011.05045.x.
doi: 10.1111/mec.2011.20.issue-8
|
[34] |
LIN Y, ZHENG H, ZHANG Q, et al. Functional profiling of EcaICE1 transcription factor gene from Eucalyptus camaldulensis, involved in cold response in tobacco plants[J]. Journal of Plant Biochemistry & Biotechnology, 2014, 23(2):141-150. DOI: 10.1007/s13562-013-0192-z.
|
[35] |
LUKATKIN A S. Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: 2. the activity of antioxidant enzymes during plant chilling[J]. Russian Journal of Plant Physiology, 2002, 49(6):782-788. DOI: 10.1023/A:1020232700648.
doi: 10.1023/A:1020965629243
|
[36] |
SAUER N. Molecular physiology of higher plant sucrose transporters[J]. FEBS Letters, 2007, 581(12):2309-2317. DOI: 10.1016/j.febslet.2007.03.048.
doi: 10.1016/j.febslet.2007.03.048
|
[37] |
NILSEN E T, MULLER W H. Phenology of the drought-deciduous shrub Lotus scoparius: climatic controls and adaptive significance[J]. Ecological Monographs, 1981, 51(3):323-341. DOI: 10.2307/2937277.
doi: 10.2307/2937277
|
[38] |
LIU Y, ZHANG T, LI X, et al. Protective mechanism of desiccation tolerance in Reaumuria soongorica: leaf abscission and sucrose accumulation in the stem[J]. Science in China Ser C: Life Sciences, 2007, 50(1):15-21.DOI: 10.1007/s11427-007-0002-8.
|
[39] |
PLÜCKEN H, MÜLLER B, GROHMANN D, et al. The HCF136 protein is essential for assembly of the photosystem Ⅱ reaction center in Arabidopsis thaliana[J]. FEBS Letters, 2002, 532(1):85-90. DOI: 10.1016/S0014-5793(02)03634-7.
doi: 10.1016/S0014-5793(02)03634-7
|
[40] |
KOMENDA J, NICKELSEN J, TICHY M, et al. The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem Ⅱ assembly complex and is important for both the efficient assembly and repair of photosystem Ⅱ in Synechocystis sp. PCC 6803[J]. Journal of Biological Chemistry, 2008, 283(33):22390-22399. DOI: 10.1074/jbc.M801917200.
doi: 10.1074/jbc.M801917200
|
[41] |
MEURER J, PLÜCKEN H, KOWALLIK K V, et al. A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem Ⅱ in Arabidopsis thaliana[J]. EMBO Journal, 2014, 17(18):5286-5297. DOI: 10.1093/emboj/17.18.5286.
doi: 10.1093/emboj/17.18.5286
|
[42] |
SCHLÖTTERER C. Hitchhiking mapping-functional genomics from the population genetics perspective[J]. Trends in Genetics, 2003, 19(1):32-38. DOI: 10.1016/S0168-9525(02)00012-4.
doi: 10.1016/S0168-9525(02)00012-4
|