南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (5): 59-66.doi: 10.3969/j.issn.1000-2006.201811018
王莉1(), 李昌荣2(
), 李发根1, 周长品1, 翁启杰1, 吕佳斌1, 陈健波2, 陈剑成3, 甘四明1,2,*(
)
收稿日期:
2018-11-09
修回日期:
2018-12-19
出版日期:
2019-10-08
发布日期:
2019-10-08
通讯作者:
甘四明
基金资助:
WANG Li1(), LI Changrong2(
), LI Fagen1, ZHOU Changpin1, WENG Qijie1, LÜ Jiabin1, CHEN Jianbo2, CHEN Jiancheng3, GAN Siming1,2,*(
)
Received:
2018-11-09
Revised:
2018-12-19
Online:
2019-10-08
Published:
2019-10-08
Contact:
GAN Siming
摘要:
【目的】检测大花序桉群体与环境适应性相关的基因组位点,为种质资源保护和利用提供分子生物学信息。【方法】利用84个SSR标记(包括29个基因组SSR 和55个EST-SSR)分析引种到广西,来源于澳大利亚昆土兰州北部和南部各7个大花序桉群体,通过Mantel 检验确定群体间是否存在地理隔离;检测群体间分化系数(Fst)离群值的受选择位点;并基于空间分析法检测与群体气候因子显著相关的等位片段,将显著相关位点的序列与NCBI数据库比对进行功能注释。【结果】大花序桉北部与南部群体间存在地理隔离,基于19个气候因子的聚类分析将北方与南方群体分为独立的组,这表明气候因子亦驱动了群体的分化。共检测到Fst离群值的受选择SSR位点39个(46.4%),其中,LOSITAN软件检测到12个正向选择位点和17个平衡选择位点。5个Fst离群值位点的6个等位片段与1个或多个气候因子显著相关(P<0.001),其等位频率在北部与南部群体间差异明显,其中,Embra6-118 bp与最冷月最低气温(Tmcm)显著相关,位点DNA序列的功能注释为碱性螺旋-环-螺旋(basic helix-loop-helix, bHLH)转录因子bHLH155;Embra20-121 bp与最暖季度降水量(Pwq)显著相关,位点的功能注释为蔗糖转运蛋白(sucrose transporters);EUCeSSR676-168 bp与Tmcm、Pwq、年均气温(Tma)和最暖月最高气温(Tmwm)均显著相关,位点的功能注释为光系统Ⅱ稳定性/组装因子HCF136 (photosystem II stability/assembly factor HCF136);另外两个显著相关位点EUCeSSR298和EUCeSSR1009的功能未知。【结论】大花序桉北部与南部群体的显著分化受长期气候的影响,在第四纪大冰期可能存在北部和南部避难所。与气候因子显著相关的SSR位点在北部和南部群体间的等位频率差异为基于正向选择的气候适应性提供了分子证据。
中图分类号:
王莉,李昌荣,李发根,等. 大花序桉群体适应性相关的SSR位点[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 59-66.
WANG Li, LI Changrong, LI Fagen, ZHOU Changpin, WENG Qijie, LÜ Jiabin, CHEN Jianbo, CHEN Jiancheng, GAN Siming. SSR loci associated with population adaptation in Eucalyptus cloeziana[J].Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(5): 59-66.DOI: 10.3969/j.issn.1000-2006.201811018.
表1
各群体4个气候因子1950—2000年的平均值及显著相关等位片段的频率"
区域 region | 群体 popu- lation | 海拔/m altitude | 气候因子climatic factors | 频率/% frequency | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tma/ ℃ | Tmcm/ ℃ | Tmwm/ ℃ | Pwq/ mm | Embra6- 118 bp | Embra20- 121 bp | EUCeSSR 298- 265 bp | EUCeSSR 676- 168 bp | EUCeSSR 1009- 179 bp | EUCeSSR 1009- 189 bp | ||||||||||||
北部 north | SC | 250 | 24.2 | 16.8 | 30.9 | 932 | 0.0 | 50.0 | 35.7 | 57.1 | 7.1 | 28.6 | |||||||||
Bar | 830 | 20.7 | 10.9 | 29.1 | 809 | 0.0 | 0.0 | 50.0 | 12.5 | 12.5 | 75.0 | ||||||||||
Rav | 1 000 | 19.5 | 8.9 | 28.5 | 661 | 0.0 | 8.3 | 50.0 | 16.7 | 16.7 | 25.0 | ||||||||||
CarS | 20 | 23.8 | 13.6 | 31.6 | 1097 | 20.0 | 5.0 | 55.0 | 50.0 | 10.0 | 40.0 | ||||||||||
Car | 6 | 23.9 | 13.8 | 31.6 | 1124 | 12.5 | 0.0 | 52.5 | 65.0 | 2.5 | 47.5 | ||||||||||
PR | 300 | 22.0 | 10.9 | 30.6 | 568 | 25.0 | 12.5 | 0.0 | 62.5 | 12.5 | 25.0 | ||||||||||
MP | 600 | 22.5 | 12.0 | 31.2 | 682 | 20.0 | 0.0 | 10.0 | 70.0 | 0.0 | 50.0 | ||||||||||
平均 mean | 429.4 | 22.4 | 12.41 | 30.50 | 839.0 | 11.07 | 10.83 | 36.17 | 47.69 | 8.76 | 41.59 | ||||||||||
南部 south | Nee | 70 | 20.8 | 9.2 | 29.9 | 485 | 42.9 | 35.7 | 7.1 | 7.1 | 50.0 | 0.0 | |||||||||
GV | 100 | 20.4 | 7.9 | 30.2 | 482 | 50.0 | 50.0 | 0.0 | 0.0 | 40.0 | 0.0 | ||||||||||
WWP | 210 | 20.3 | 8.4 | 29.7 | 513 | 40.0 | 40.0 | 0.0 | 10.0 | 50.0 | 0.0 | ||||||||||
Wol | 120 | 20.3 | 8.4 | 29.7 | 513 | 62.5 | 43.8 | 0.0 | 0.0 | 50.0 | 0.0 | ||||||||||
TC | 80 | 20.5 | 9.0 | 29.3 | 567 | 62.5 | 50.0 | 0.0 | 0.0 | 50.0 | 0.0 | ||||||||||
Woo | 400 | 19.6 | 7.9 | 28.9 | 567 | 66.7 | 44.4 | 11.1 | 0.0 | 33.3 | 5.6 | ||||||||||
Pom | 40 | 20.3 | 8.8 | 28.9 | 623 | 61.1 | 50.0 | 61.1 | 0.0 | 50.0 | 0.0 | ||||||||||
平均 mean | 145.7 | 20.30 | 8.51 | 29.51 | 535.7 | 55.09 | 44.84 | 11.34 | 2.45 | 46.19 | 0.79 |
表2
与4个气候因子显著相关的SSR等位片段及其 相关的Efron参数"
SSR位点 SSR locus | 等位 片段/bp allele | Tma | Tmcm | Tmwm | Pwq |
---|---|---|---|---|---|
Embra6 | 118 | - | 0.537 1*** | - | - |
Embra20 | 121 | - | - | - | 0.382 6*** |
EUCeSSR298 | 265 | - | - | - | 0.356 6*** |
EUCeSSR676 | 168 | 0.662 2*** | 0.661 2*** | 0.621 5*** | 0.496 1*** |
EUCeSSR1009 | 179 | 0.523 3*** | 0.590 1*** | 0.457 4*** | 0.535 7*** |
189 | 0.551 0*** | 0.617 4*** | 0.489 0*** | 0.550 3*** |
[1] |
ROOT T L, PRICE J T, HALL K R, et al. Fingerprints of globalwarming on wild animals and plants[J]. Nature, 2003, 421(6918):57-60. DOI: 10.1038/nature01333.
doi: 10.1038/nature01333 |
[2] |
DAVIS M B, SHAW R G. Range shifts and adaptive responses to Quaternary climate change[J]. Science, 2001, 292(5517):673-679. DOI: 10.1126/science.292.5517.673.
doi: 10.1126/science.292.5517.673 |
[3] |
JUMP A S, PEÑUELAS J. Running to stand still: adaptation and the response of plants to rapid climate change[J]. Ecology Letters, 2005, 8(9):1010-1020. DOI: 10.1111/j.1461-0248.2005.00796.x.
doi: 10.1111/ele.2005.8.issue-9 |
[4] |
SAVOLAINEN O, LASCOUX M, MERILÄ J. Ecological genomics of local adaptation[J]. Nature Reviews Genetics, 2013, 14(11):807-820. DOI: 10.1038/nrg3522.
doi: 10.1038/nrg3522 |
[5] |
DELPH L F. The study of local adaptation: a thriving field of research[J]. Journal of Heredity, 2018, 109(1):1-2. DOI: 10.1093/jhered/esx099.
doi: 10.1093/jhered/esx099 |
[6] |
CSILLÉRY K, LALAGÜE H, VENDRAMIN G G. Detecting short spatial scale local adaptation andepistatic selection in climate-related candidate genes in European beech (Fagus sylvatica) populations[J]. Molecular Ecology, 2014, 23(19):4696-4708. DOI: 10.1111/mec.12902.
doi: 10.1111/mec.12902 |
[7] |
AITKEN SN, YEAMAN S, HOLLIDAY J A, et al. Adaptation, migration orextirpation: climate change outcomes for tree populations[J]. Evolutionary Applications, 2008, 1(1), 95-111. DOI: 10.1111/j.1752-4571.2007.00013.x.
doi: 10.1111/j.1752-4571.2007.00013.x |
[8] |
SAVOLAINEN O, PYHÄJÄRVI T, KNÜRR T. Gene flow and local adaptation in trees[J]. Annual Review of Ecology, Evolution, and Systematics, 2007, 38:595-619. DOI: 10.1146/annurev.ecolsys.38.091206.095646.
doi: 10.1146/annurev.ecolsys.38.091206.095646 |
[9] |
KAWECKI T J, EBERT D. Conceptual issues in local adaptation[J]. Ecology Letters, 2004, 7(12):1225-1241. DOI: 10.1111/j.1461-0248.2004.00684.x.
doi: 10.1111/ele.2004.7.issue-12 |
[10] |
GIENAPP P, TEPLITSKY C, ALHO J S, et al. Climate change and evolution: disentangling environmental and genetic responses[J]. Molecular Ecology, 2008, 17(1):167-178. DOI: 10.1111/j.1365-294X.2007.03413.x.
doi: 10.1111/mec.2008.17.issue-1 |
[11] |
BRADBURY D, SMITHSON A, KRAUSS S L. Signatures of diversifying selection at EST-SSR loci and association with climate in naturalEucalyptus populations[J]. Molecular Ecology, 2013, 22(20):5112-5129. DOI: 10.1111/mec.12463.
doi: 10.1111/mec.12463 |
[12] |
SONG Z, ZHANG M, LI F, et al. Genome scans for divergent selection in natural populations of the widespread hardwood species Eucalyptus grandis ( Myrtaceae) using microsatellites[J]. Scientific Reports, 6:34941. DOI: 10.1038/srep34941.
doi: 10.1038/srep34941 |
[13] | LIND B M, MENON M, BOLTE C E, et al. The genomics of local adaptation in trees: are we out of the woods yet[J]. Tree Genetics & Genomes, 2018, 14(2):29. DOI: 10.1007/s11295-017-1224-y. |
[14] |
BROOKER M I H. A new classification of the genus Eucalyptus L’Hér.(Myrtaceae)[J]. Australian Systematic Botany, 2000, 13(1):79-148. DOI: 10.1071/SB98008.
doi: 10.1071/SB98008 |
[15] | TURNBULL J. Geographical variation in Eucalyptus cloeziana F. Muell.[D]. Canberra: Australian National University, 1979. |
[16] | NGUGI M R, DOLEY D, HUNT MA, et al. Physiological responses to water stress in Eucalyptus cloeziana and E. argophloia seedlings[J]. Trees, 2004, 18(4):381-389. DOI: 10.1007/s00468-003-0316-5. |
[17] | LI C, WENG Q, CHEN J, et al. Genetic parameters for growth and wood mechanical properties inEucalyptus cloeziana F. Muell.[J]. New Forests, 48(1):33-49. DOI: 10.1007/s11056-016-9554-4. |
[18] | 宋志姣, 杨合宇, 翁启杰, 等. 细叶桉群体的遗传多样性和受选择位点[J]. 林业科学, 2016, 52(9):39-47. DOI: 10.11707/j.1001-7488.20160905. |
SONG Z J, YANG H Y, WENG Q J, et al. Genetic diversity and selective loci in Eucalyptus tereticornis populations [J]. Scientia Silvae Sinicae, 2016, 52(9):39-47. | |
[19] |
BRONDANI R P V, WILLIAMS E R, BRONDANI C, et al. A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus[J]. BMC Plant Biology, 2006, 6:20. DOI: 10.1186/1471-2229-6-20.
doi: 10.1186/1471-2229-6-20 |
[20] | 周长品, 李发根, 翁启杰, 等. PCR产物直接测序和混合克隆测序进行桉树EST-SSR标记开发[J]. 分子植物育种(网络版), 2010, 8(1):e1. DOI: 10.5376/mpb.cn.2010.08.0001. |
ZHOU C P, LI F G, WENG Q J, et al. Comparison between direct sequencing and pool-cloning-based sequencing of PCR products in EST-SSR marker development in Eucalyptus [J]. Molecular Plant Breeding (online), 2010, 8(1):e1. | |
[21] |
HE X, WANG Y, LI F, et al. Development of 198 novel EST-derived microsatellites in Eucalyptus (Myrtaceae)[J]. American Journal of Botany, 2012, 99(4):e134-e148. DOI: 10.3732/ajb.1100442.
doi: 10.3732/ajb.1100442 |
[22] |
ZHOU C, HE X, LI F, et al. Development of 240 novel EST-SSRs in Eucalyptus L’Hérit.[J]. Molecular Breeding, 2014, 33(1):221-225. DOI: 10.1007/s11032-013-9923-z.
doi: 10.1007/s11032-013-9923-z |
[23] |
LI F, GAN S. An optimised protocol for fluorescent-dUTP based SSR genotyping and its application to genetic mapping in Eucalyptus[J]. Silvae Genetica, 2011, 60(1):18-25.
doi: 10.1515/sg-2011-0003 |
[24] |
PEAKALL R, SMOUSE P. GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research[J]. Molecular Ecology Notes, 2006, 6(1):288-295. DOI: 10.1111/j.1471-8286.2005.01155.x.
doi: 10.1111/men.2006.6.issue-1 |
[25] |
HIJMANS R J, CAMERSON S E, PARRA J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. International Journal of Climatology, 2005, 25(15):1965-1978. DOI: 10.1002/joc.1276.
doi: 10.1002/(ISSN)1097-0088 |
[26] |
ANTAO T, LOPES A, LOPES R J, et al. LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method[J]. BMC Bioinformatics, 2008, 9(1):323. DOI: 10.1186/1471-2105-9-323.
doi: 10.1186/1471-2105-9-323 |
[27] |
EXCOFFIER L, LISCHER H E L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3):564-567. DOI: 10.1111/j.1755-0998.2010.02847.x.
doi: 10.1111/men.2010.10.issue-3 |
[28] |
FOLL M, GAGGIOTTI O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective[J]. Genetics, 2008, 180(2):977-993. DOI: 10.1534/genetics.108.092221.
doi: 10.1534/genetics.108.092221 |
[29] |
STUCKI S, OROZCO-TERWENGEL P, FORESTER B R, et al. High performance computation of landscape genomic models including local indicators of spatial association[J]. Molecular Ecology Resources, 2017, 17(5):1072-1089. DOI: 10.1111/1755-0998.12629.
doi: 10.1111/men.2017.17.issue-5 |
[30] | 王莉, 李昌荣, 李发根, 等. 大花序桉SSR位点多样性和群体结构分析[J]. 分子植物育种, 2019, 17(13):4470-4478. DOI: 10.13271/j.mpb.017.004470. |
WANG L, LI C R, LI F G, et al. SSR marker diversity and population structure in Eucalyptus cloeziana [J]. Molecular Plant Breeding, 2019, 17(13):4470-4478. | |
[31] |
HILL R S. Origins of the southeastern Australian vegetation[J]. Philosophical Transactions of the Royal Society B. Biological Science, 2004, 359(1450):1537-1549. DOI: 10.1098/rstb.2004.1526.
doi: 10.1098/rstb.2004.1526 |
[32] | SHEPHERD M, SEXTON T R, THOMAS D, et al. Geographical and historical determinants of SSR variation in Eucalyptus pilularis[J]. Canadian Journal of Forest Research, 2010, 359(1450):1537-1549. DOI: 10.1139/X10-049. |
[33] |
PRUNIER J, LAROCHE J, BEAULIEU J, et al. Scanning the genome for gene SNPs related to climate adaptation and estimating selection at the molecular level in boreal black spruce[J]. Molecular Ecology, 2011, 20(8):1702-1716. DOI: 10.1111/j.1365-294X.2011.05045.x.
doi: 10.1111/mec.2011.20.issue-8 |
[34] | LIN Y, ZHENG H, ZHANG Q, et al. Functional profiling of EcaICE1 transcription factor gene from Eucalyptus camaldulensis, involved in cold response in tobacco plants[J]. Journal of Plant Biochemistry & Biotechnology, 2014, 23(2):141-150. DOI: 10.1007/s13562-013-0192-z. |
[35] |
LUKATKIN A S. Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: 2. the activity of antioxidant enzymes during plant chilling[J]. Russian Journal of Plant Physiology, 2002, 49(6):782-788. DOI: 10.1023/A:1020232700648.
doi: 10.1023/A:1020965629243 |
[36] |
SAUER N. Molecular physiology of higher plant sucrose transporters[J]. FEBS Letters, 2007, 581(12):2309-2317. DOI: 10.1016/j.febslet.2007.03.048.
doi: 10.1016/j.febslet.2007.03.048 |
[37] |
NILSEN E T, MULLER W H. Phenology of the drought-deciduous shrub Lotus scoparius: climatic controls and adaptive significance[J]. Ecological Monographs, 1981, 51(3):323-341. DOI: 10.2307/2937277.
doi: 10.2307/2937277 |
[38] | LIU Y, ZHANG T, LI X, et al. Protective mechanism of desiccation tolerance in Reaumuria soongorica: leaf abscission and sucrose accumulation in the stem[J]. Science in China Ser C: Life Sciences, 2007, 50(1):15-21.DOI: 10.1007/s11427-007-0002-8. |
[39] |
PLÜCKEN H, MÜLLER B, GROHMANN D, et al. The HCF136 protein is essential for assembly of the photosystem Ⅱ reaction center in Arabidopsis thaliana[J]. FEBS Letters, 2002, 532(1):85-90. DOI: 10.1016/S0014-5793(02)03634-7.
doi: 10.1016/S0014-5793(02)03634-7 |
[40] |
KOMENDA J, NICKELSEN J, TICHY M, et al. The cyanobacterial homologue of HCF136/YCF48 is a component of an early photosystem Ⅱ assembly complex and is important for both the efficient assembly and repair of photosystem Ⅱ in Synechocystis sp. PCC 6803[J]. Journal of Biological Chemistry, 2008, 283(33):22390-22399. DOI: 10.1074/jbc.M801917200.
doi: 10.1074/jbc.M801917200 |
[41] |
MEURER J, PLÜCKEN H, KOWALLIK K V, et al. A nuclear-encoded protein of prokaryotic origin is essential for the stability of photosystem Ⅱ in Arabidopsis thaliana[J]. EMBO Journal, 2014, 17(18):5286-5297. DOI: 10.1093/emboj/17.18.5286.
doi: 10.1093/emboj/17.18.5286 |
[42] |
SCHLÖTTERER C. Hitchhiking mapping-functional genomics from the population genetics perspective[J]. Trends in Genetics, 2003, 19(1):32-38. DOI: 10.1016/S0168-9525(02)00012-4.
doi: 10.1016/S0168-9525(02)00012-4 |
[1] | 韩新宇, 高露双, 秦莉, 庞荣荣, 刘鸣谦, 朱一泓, 田益雨, 张金. 林分密度对兴安落叶松径向生长-气候关系的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 182-190. |
[2] | 罗楚滢, 佘济云, 唐子朝. 基于SSPs气候场景的濒危植物银杉潜在分布区预测[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 161-168. |
[3] | 高羽, 李静, 刘洋, 乌雅瀚, 巩家星, 辛启睿. 结构方程模型在兴安落叶松林生长中的应用[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 38-46. |
[4] | 郭常酉, 郭宏仙, 王宝华. 基于气候因子的杉木单木胸径生长模型构建[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 47-56. |
[5] | 王欢利, 严灵君, 黄犀, 王仲伟, 汤诗杰. 南京椴群体遗传多样性和遗传结构分析[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 145-153. |
[6] | 冯一宁, 李因刚, 祁铭, 周鹏燕, 周琦, 董乐, 徐立安. 基于SSR标记的福建省闽楠代表性群体遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 102-108. |
[7] | 李丹丹, 翁启杰, 甘四明, 周长品, 黄世能, 李梅. 基于EST-SSR标记鉴定猴耳环自由授粉的全同胞子代[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 95-101. |
[8] | 吴帆, 朱沛煌, 季孔庶. 马尾松分布格局对未来气候变化的响应[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 196-204. |
[9] | 何旭东, 郑纪伟, 孙冲, 何开跃, 王保松. 33个杨柳品种指纹图谱构建[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 35-42. |
[10] | 刘亚静, 周来, 张博, 陈丽萍, 潘磊, 孙玉军. 不同林龄杉木径向变化及其对气象因子的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 135-144. |
[11] | 黄红兰, 钟沃谷, 衣德萍, 蔡军火, 张露. 未来气候变化对我国毛红椿适生区分布格局的影响预测[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 163-170. |
[12] | 易敏, 张露, 雷蕾, 程子珊, 孙世武, 赖猛. 湿地松转录组SSR分析及EST-SSR标记开发[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 75-83. |
[13] | 孙利娜, 周群, 黄妹平, 周长品, 徐世松, 杨舒婷, 杜铃, 甘四明, 唐庆. 基于SSR标记构建宝巾花品种的分子指纹[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 60-66. |
[14] | 李昌荣,陈健波,郭东强,翁启杰,卢翠香,李建凡,周维,甘四明. 锯材大花序桉生长和材性的综合指数选择[J]. 南京林业大学学报(自然科学版), 2019, 43(01): 1-8. |
[15] | 荣浩,黄彬,周琦,张往祥,徐立安. 61个观赏海棠品种的SSR指纹图谱构建及遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2018, 42(03): 45-50. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1323
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1574
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||