基于多站扫描的点云特征参数与材积结构动态分析

蒋佳文, 温小荣, 顾海波, 张峥男, 刘方舟, 张严利, 孙圆

南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (6) : 83-90.

PDF(1893 KB)
PDF(1893 KB)
南京林业大学学报(自然科学版) ›› 2019, Vol. 43 ›› Issue (6) : 83-90. DOI: 10.3969/j.issn.1000-2006.201901020
研究论文

基于多站扫描的点云特征参数与材积结构动态分析

作者信息 +

Dynamic analysis of point cloud characteristic parameters and volume structure based on multi-station scan

Author information +
文章历史 +

摘要

【目的】采用地面激光雷达(TLS)进行多站点扫描获取立木的点云信息,提取有关点云分布的特征参数,拓展立木测树因子,建立基于特征参数的材积模型。【方法】以马褂木(Liriodendron chinense)人工林为研究对象,利用点云数据提供的立木上部直径(d)、树高(H)等因子对两期(2014、2017年)林分结构变化进行分析;设计并提取基于TLS点云的特征参数高度累计百分比,同时提取了其他与高度相关的特征参数作为一组变量;将提取的立木胸径(DBH)与特征参数作为另一组变量;最后分析特征参数、胸径与材积的相关性,通过逐步回归法分别建立基于两组变量的材积模型,并分析两期材积的动态变化。【结果】选用特征参数H25Ht, var(点云高度方差)拟合两期材积模型,其决定系数R2分别为0.771 1、0.742 6;利用特征参数H25与胸径拟合,模型预测精度有明显的提升。以上两组材积模型预测各径阶材积变化,其模型值与实测值无显著差异,R2均高于0.9。【结论】研究提取的高度累计百分比与立木测树因子紧密相关,可以很好地反演林木的动态结构。研究建立的材积模型均有较高的精度,可用于林木材积动态变化监测,为地面激光扫描点云参与森林资源动态监测提供理论参考。

Abstract

【Objective】 The use of terrestrial laser scanner (TLS) in multistations to obtain the point cloud information of a standing tree, extracting the characteristic parameters of the point cloud distribution that expand the tree measurement factor, and establishing a volume model based on these characteristic parameters. 【Method】Liriodendron chinense plantation was studied, and the structural changes of the two stages (2014, 2017)were analyzed using the upper diameter (d) and tree height (H) of the standing tree provided by the point cloud data. The characteristic parameters of TLS point cloud named high cumulative percentage was designed and extracted, and other height-related feature parameters were extracted as a set of variables; the extracted DBH and feature parameters were considered as another set of variables; finally, the characteristic parameters were analyzed. The correlation between DBH and volume was established by stepwise regression method to build a volume model based on two sets of variables, and analyze the dynamic changes of the two phases. 【Result】The characteristic parametersH25 and Ht, var (point cloud height variance) were used to fit the two-stage volume model, and their R2 were 0.771 1 and 0.742 6, respectively. The accuracy of the model using the characteristic parameter H25 and the DBH improved. The two sets of volume models mentioned earlier were used to predict the volume change in each step; the model value and the measured value was not significantly different, and R2 is higher than 0.9. 【Conclusion】 The high cumulative percentage extracted in this study is closely related to the tree measurement factor, which can invert the dynamic structure of forest trees. The volume model developed by the research achieves high precision and can be used for the monitoring of the dynamic change in forest wood product, which provides a new reference for TLS point cloud to participate in the dynamic monitoring of forest resources.

关键词

林分结构 / 动态变化 / 地面激光雷达 / 材积模型 / 马褂木

Key words

stand structure / dynamic change / terrestrial laser scanner / volume model / Liriodendron chinense

引用本文

导出引用
蒋佳文, 温小荣, 顾海波, . 基于多站扫描的点云特征参数与材积结构动态分析[J]. 南京林业大学学报(自然科学版). 2019, 43(6): 83-90 https://doi.org/10.3969/j.issn.1000-2006.201901020
JIANG Jiawen, WEN Xiaorong, GU Haibo, et al. Dynamic analysis of point cloud characteristic parameters and volume structure based on multi-station scan[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2019, 43(6): 83-90 https://doi.org/10.3969/j.issn.1000-2006.201901020
中图分类号: S758;TP79   

参考文献

[1]
DONOGHUE D N M, WATT P J, COX N J, et al. Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data[J]. Remote Sensing of Environment, 2007, 110(4):509-522. DOI: 10.1016/j.rse.2007.02.032.
[2]
SIMONSE M, ASCHOFF T, SPIECKER H, et al. Automatic determination of forest inventory parameters using terrestrial laser scanning[R]. Proceedings of the Scand Laser Scientific Workshop on Airborne Laser Scanning of Forests, 2003.
[3]
LIANG X L, HYYPPÄ J, KAARTINEN H, et al. International benchmarking of terrestrial laser scanning approaches for forest inventories[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 144:137-179. DOI: 10.1016/j.isprsjprs.2018.06.021.
[4]
ERIKSON M, KARIN V. Finding tree-stems in laser range images of young mixed stands to perform selective cleaning[R]. Proceedings of the Scand Laser Scientific Workshop on Airborne Laser Scanning of Forests, 2003.
[5]
SUN Y, LIANG X L, LIANG Z Y, et al. Deriving merchantable volume in poplar through a localized tapering function from non-destructive terrestrial laser scanning[J]. Forests, 2016, 7(12):87. DOI: 10.3390/f7040087.
[6]
KANKARE V, HOLOPAINEN M, VASTARANTA M, et al. Individual tree biomass estimation using terrestrial laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 75:64-75. DOI: 10.1016/j.isprsjprs.2012.10.003.
[7]
ASTRUP R, DUCEY M J, GRANHUS A, et al. Approaches for estimating stand-level volume using terrestrial laser scanning in a single-scan mode[J]. Canadian Journal of Forest Research, 2014, 44(6):666-676. DOI: 10.1139/cjfr-2013-0535.
[8]
SRINIVASAN S, POPESCU S C, ERIKSSON M, et al. Multi-temporal terrestrial laser scanning formodeling tree biomass change[J]. Forest Ecology and Management, 2014, 318:304-317. DOI: 10.1016/j.foreco.2014.01.038.
[9]
SEIDEL D, EHBRECHT M, PUETTMANN K. Assessing different components of three-dimensional forest structure with single-scan terrestrial laser scanning: a case study[J]. Forest Ecology and Management, 2016, 381:196-208. DOI: 10.1016/j.foreco.2016.09.036.
[10]
NESSET E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data[J]. Remote Sensing of Environment, 2002, 80(1):88-99. DOI: 10.1016/s0034-4257(01)00290-5.
[11]
SILVA C A, KLAUBERG C, HUDAK A T, et al. A principal component approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data[J]. Forestry, 2016, 89(4):422-433. DOI: 10.1093/forestry/cpw016.
[12]
GRILLI E, MENNA F, REMONDINO F. A review of point clouds segmentation and classification algorithms[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017(2/3):339-344. DOI: 10.5194/isprs-archives-xlii-2-w3-339-2017.
[13]
CHE E Z, OLSEN M J. Multi-scan segmentation of terrestrial laser scanning data based on normal variation analysis[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 143:233-248. DOI: 10.1016/j.isprsjprs.2018.01.019.
[14]
MAGUYA A, TEGEL K, JUNTTILA V, et al. Moving voxel method for estimating canopy base height from airborne laser scanner data[J]. Remote Sensing, 2015, 7(7):8950-8972. DOI: 10.3390/rs70708950.
[15]
梁子瑜, 孙圆, 梁欣廉, 等. 基于地面激光扫描仪的树干削度方程提取[J]. 南京林业大学学报(自然科学版), 2014, 38(5):6-10. DOI: 10.3969/j.issn.1000-2006.2014.05.002.
LIANG Z Y, SUN Y, LIANG X L, et al. The extraction of stem taper equation based on terrestrial laser scanning[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2014, 38(5):6-10.
[16]
LIU J B, LIANG X L, HYYPPÄ J, et al. Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 56:13-23. DOI: 10.1016/j.jag.2016.11.003.
[17]
郝自远, 李火根, 康昊, 等. 北美鹅掌楸人工林生长规律及早期选择可行性探究[J]. 林业科学研究, 2017, 30(5):878-885. DOI: 10.13275/j.cnki.lykxyj.2017.05.023.
HAO Z Y, LI H G, KANG H, et al. Growth pattern and early selection of Liriodendron tulipifera [J]. Forest Research, 2017, 30(5):878-885.
[18]
孟宪宇. 测树学[M]. 北京: 中国林业出版社, 2006.
MENG X Y. Forest measuration [M]. Beijing : China Forestry Publishing House, 2006.
[19]
刘鲁霞, 庞勇, 李增元. 基于地基激光雷达的亚热带森林单木胸径与树高提取[J]. 林业科学, 2016, 52(2):26-37. DOI: 10.11707/j.1001-7488.20160204.
LIU L X, PANG Y, LI Z Y. Individual tree DBH and height estimation using terrestrial laser scanning(TLS) in a subtropical forest[J]. Scientia Silvae Sinicae, 2016, 52(2):26-37.
[20]
MCGAUGHE R J. FUSION/LDV: software for LIDAR data analysis and visualization[R]. USDA Forest Service. Pacific Northwest Research Station, 2007:28-30.
[21]
STARK S C, LEITOLD V, WU J L, et al. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment[J]. Ecology Letters, 2012, 15(12):1406-1414. DOI: 10.1111/j.1461-0248.2012.01864.x.
[22]
唐守正, 李勇, 符利勇. 生物数学模型的统计基础[M].2版. 北京: 高等教育出版社, 2015.
TANG S Z, LI Y, FU L Y. Statistical foundation for biomathematical models[M]. 2nd ed. Beijing: Higher Education Press, 2015.
[23]
曹林, 佘光辉. 基于机载小光斑全波形LiDAR的亚热带林分特征反演[J]. 林业科学, 2015, 51(6):81-92. DOI: 10.11707/j.1001-7488.20150610.
CAO L, SHE G H. Inversion of forest stand characteristics using small-footprint full-waveform airborne LiDAR in a subtropical forest[J]. Scientia Silvae Sinicae, 2015, 51(6):81-92.
[24]
DRAKE J B, DUBAYAH R O, KNOX R G, et al. Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest[J]. Remote Sensing of Environment, 2002, 81(2/3):378-392. DOI: 10.1016/s0034-4257(02)00013-5.
[25]
HARDING D J, LEFSKY M A, PARKER G G, et al. Laser altimeter canopy height profiles: methods and validation for closed-canopy, broadleaf forests[J]. Remote Sensing of Environment, 2001, 76(3):283-297. DOI: 10.1016/s0034-4257(00)00210-8.
[26]
刘强, 何彬生, 周永丽, 等. 鹅掌楸天然林生长特性研究[J]. 四川林业科技, 2016, 37(2):12-17.
LIU Q, HE B S, ZHOU Y L, et al. A study of the growth characteristics of natural Liriodendron chinense forest [J]. Journal of Sichuan Forestry Science and Technology, 2016, 37(2):12-17.

基金

国家重点研发计划(2017YFD0600904)
中国博士后科学基金项目(2016M601822)
江苏高校优势学科建设工程资助项目(PAPD)

编辑: 李燕文

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
PDF(1893 KB)

Accesses

Citation

Detail

段落导航
相关文章

/