
油茶种子性状及浸种后内源激素含量分析
An analysis of seed traits and endogenous hormone levels after seed soakings in Camellia oleifera
【目的】研究油茶种子性状,分析油茶种子浸种期间吸水率及吸水速率,探讨种子浸水机制下内源激素动态变化规律,为标准化砧木培育提供技术支撑。【方法】以‘长林3号’(3号)、‘长林4号’(4号)、‘长林40号’(40号)、‘长林18号’(18号)、‘长林53号’(53号)种子为试验材料,测定种子形状参数、体积,并在人工气候控制条件下计算不同浸种时间的吸水率和吸水速率;利用液质联用(LC-MS)方法对‘长林18号’(18号)种子浸种不同时间和温度条件下赤霉素(GA3)、脱落酸(ABA)、水杨酸(SA)和茉莉酸(JA)、生长素(IAA)和玉米素核苷(ZR)含量进行检验,采用单因素方差分析比较不同条件下各激素含量差异。【结果】品种间种子体积由大到小依次为长林53号、40号、18号、3号、4号,且53号与其他品种存在显著差异;种子三维系数显示长林3号、4号和40号多呈扁平状,18号和53号多近球形,且种子三维系数与种子横径长度显著相关;3号和4号种子体积与纵径存在显著或极显著正相关,40号和53号横径与侧径存在显著负相关,18号种子体积与形状参数无相关性。各品种浸种48 h后吸水率和吸水速率逐渐稳定;种子浸种0~21 h,53号吸水率最高,40号最低;浸种21~48 h吸水率由大到小依次为4号、3号、53号、40号和18号。各品种吸水速率在浸种10 h内,由大到小依次为40号、4号、3号、53号、18号,浸种10 h后53号最高。种子浸种后的发芽率无显著差异,由大到小依次为4号、40号、53号、3号和18号。18号浸种后GA3含量逐渐上升,在浸种2 d时达到最高,为0.39 mg/kg;SA和JA含量在浸种4 d时达到最高,分别为0.058 mg/kg和1.77 mg/kg;ABA含量在浸种2 d和5 d时达到最高,约为0.050 mg/kg,4 d时最低为0.014 mg/kg。m(GA3)/m(ABA)在浸种1 d和4 d时维持较高水平。m(GA3)/m(JA)在浸种1 d时达高值,4 d时最低;m(GA3+SA)/m(ABA+JA)随着浸种时间增加逐渐下降。18号浸种温度为25~30 ℃时对提高种子内源激素含量有着显著作用。【结论】横径显著影响种子形状,18号种子均匀度高且吸水率和吸水速率较为稳定;种子浸种后48 h吸水率和吸水速率达到稳定状态,促进萌发类激素含量升高。因此,浸种温度应在30 ℃下有利于种子萌发。研究结果可为油茶砧木标准化培育提供理论依据。
【Objective】This study investigated the seed characters of Camellia oleifera and analyzed the changes in water absorption and the absorption rate to explore changes in endogenous hormones during seed soaking and to provide a technical support for standardized rootstock cultivation. 【Method】Seeds of C. oleifera cultivars: ‘Changlin 3’, ‘Changlin 4’, ‘Changlin 18’, ‘Changlin 40’ and ‘Changlin 53’ were used in experiments to determine seed shape parameters and volume. In an artificial climate chamber with the fixed temperature and humidity, the water absorption and absorption rate at different times during seed soaking were determined for all the cultivars. In a separate experiment, Changlin 18 was subjected to seed soaking at different times and temperatures and the concentrations of gibberellin (GA3), abscisic acid (ABA), salicylic acid (SA), and jasmonic acid (JA) were determined using LC-MS and compared by one-way ANOVA. 【Result】The seed volume was in the order as follows: Changlin 53, 40, 18, 3 and 4. Changlin 53 showed a significant variance in relation to the other cultivars. The three-dimensional coefficients of the seeds indicated that they were mostly flat for Changlin 3, 4 and 40 and nearly spherical for Changlin 18 and 53, which were significantly correlated with the transverse diameter length of the seeds. The seed volume of Changlin 3 and 4 was significantly or very significantly positively correlated with longitudinal and transverse diameters and there was a significant negative correlation with the cross diameter and seed volume between Changlin 40 and 53. There was significantly correlated with the seed volume between Changlin 40 and 53. The water absorption and absorption rate of each cultivar gradually stabilized after 48 h of seed soaking. Water absorption by Changlin 53 seeds was the highest than by Changlin 40 seeds, the lowest during 0-21 h of seed soaking. From 21-48 h of seed soaking, water absorption was in the order: Changlin 4, 3, 53, 40 and 18. The water absorption rate of Changlin 40, 4, 3, 53 and 18 was highest values within 10 h. There was no significant difference between cultivars in the germination rate (P < 0.01 and P< 0.05) after seed soaking, and the order was: Changlin 4, 40, 53, 3 and 18. The concentration of GA3 increased gradually after seed soaking in Changlin 18 and reached its highest value (0.39 mg/kg) in 2 d. The highest values for SA and JA were 0.058 and 1.77 mg/kg, respectively, reached in 4 d. There were the highest values with 0.050 mg/kg in 2 and 5 d, while there were the lowest values with 0.014 mg/kg in 4 d. During seed soaking, a continuously high m(GA3)/m(ABA) level was noted in 1 d and 4 d. The highest value for m(GA3)/m(JA) were reached in 1 d and the lowest values in 4 d. The value for m(GA3 + SA)/m(ABA + JA) decreased with an increase in seed soaking time. The soaking temperature for Changlin 18 was optimal from 25-30 ℃, and had a significant effect on improving the concentration of endogenous hormones. 【Conclusion】The shape of seeds of C. oleifera cultivars was significantly affected by the transverse diameter. There was high uniformity in seeds of Changlin 18 which were stable in the water absorption and absorption rate. The water absorption and absorption rate reached stability after 48 h during seed soaking, which promoted high hormone concentrations for the germination of seeds. The seed soaking temperature was optimal for seed germination under 30 ℃. The results provide a theoretical basis for the standardized cultivation of C. oleifera rootstock.
Camellia oleifera / seed character / seed soaking / endogenous hormones
[1] |
庄瑞林 . 中国油茶[M]. 北京: 中国林业出版社, 2008.
|
[2] |
庄瑞林 . 我国油茶良种选育工作的历史回顾与展望[J]. 林业科技开发, 2010,24(6):1-5.
|
[3] |
杨小环, 王玉国, 杨文秀 , 等. 种子引发对水分胁迫下大豆幼苗生理特性的影响[J]. 中国生态农业学报, 2009,17(6):1191-1195.
The effects of seed priming on seed membrane permeability, soluble protein content, seed germination index and seedling physiological properties of two soybean varieties (weak drought-resistant variety “Jindou 19” and strong drought-resistant variety “Jinda 53” ) under water stress were analyzed. Results indicate that seed membrane permeability of the two varieties significantly decreases while soluble protein content increases significantly under seed priming. Meanwhile, the germination potential, germination rate, germination index and vigor index increase to some degree. When seedlings are under severe water stress (6~9h), compared with the treatments without seed priming, priming makes the seedling membrane permeability and MDA content of the two varieties significantly decrease, while makes SOD and POD activities, proline and soluble protein contents increase. This implies that seed priming improves drought tolerance of soybean seedling by increasing protective enzyme activity, proline and soluble protein contents. Furthermore, the study shows that seed priming exhibits more obvious drought-resistance-increasing effect on the weak drought-resistant variety (“Jindou 19”) than on the strong drought-resistant variety (“Jinda 53”).
|
[4] |
刘慧霞, 王彦荣 . 水引发对紫花苜蓿种子萌发及其生理活动的影响[J]. 草业学报, 2008,17(4):78-84.
|
[5] |
程瑶, 方向文, 蒋志荣 , 等. 温水浸种对蒙古黄芪种子萌发特性的影响[J]. 植物科学学报, 2017,35(3) : 413-420.
|
[6] |
张曼, 戴蓉, 张顺凯 , 等. H2O2浸种对油菜种子低温萌发的缓解效应[J]. 南京农业大学学报, 2017,40(6):963-970.
|
[7] |
杨光华, 曾蕾, 王学林 , 等. 浸种及损伤对甜瓜种子发芽的影响[J]. 热带农业科学, 2017,37(11):22-26.
|
[8] |
王红俊, 陈志飞, 张莹 , 等. 浸种时间和浸种剂对草地早熟禾种子发芽的影响[J]. 草业科学, 2014,31(11):2095-2104.
|
[9] |
潘彬荣, 任镜羽, 赵光武 . 浸种处理对甜玉米种子萌发及活力的影响[J]. 浙江农林大学学报, 2015,32(1):47-51.
|
[10] |
郑福超, 耿兴敏, 胡义红 , 等. 温度及浸种对杜鹃种子萌发特性的影响[J]. 福建林业科技, 2016,43(4):125-129.
|
[11] |
刘建霞, 张晓丹, 王润梅 , 等. 6-BA浸种对盐胁迫下绿豆萌发及幼苗生理特性的影响[J]. 作物杂志, 2018(1):166-172.
|
[12] |
肖生旺, 方向文, 蒋志荣 , 等. 温水浸种和IAA溶液浸种对当归种子萌发特性的影响[J]. 生态学杂志, 2017,36(5):1265-1270.
|
[13] |
刘丽琴, 张永清, 李鑫 , 等. 烯效唑浸种对干旱胁迫下红小豆生长及其根系生理特性的影响[J]. 西北植物学报, 2017,37(1):144-153.
|
[14] |
江胜国, 钱侯春, 张斗胜 , 等. 桐城市油茶气候品质评价模型构建方法探讨[J]. 森林工程, 2018,34(5):39-46.
|
[15] |
袁军, 谭晓风, 罗健 , 等. 不同处理措施对普通油茶种子萌发的影响[J]. 中国种业, 2009,9:50-51.
|
[16] |
徐恒恒, 黎妮, 刘树君 , 等. 种子萌发及其调控的研究进展[J]. 作物学报, 2014,40(7):1141-1156.
|
[17] |
张冠初, 丁红, 杨吉顺 , 等. 不同花生品种种子形状与吸水速率的研究[J]. 花生学报, 2014,43(4):26-31.
|
[18] |
张冠初, 丁红, 戴良香 , 等. 不同粒重、粒型花生种子吸水规律及萌发特性的研究[J]. 核农学报, 2016,30(2):372-378.
|
[19] |
程军勇, 周席华, 邓先珍 , 等. 不同处理措施对油茶种子发芽率的影响[J]. 湖北林业科技, 2014,43(6):26-27,56.
|
[20] |
杜维, 阮成江, 丁健 , 等. 液相色谱串联质谱法同时测定油茶不同组织中5类内源激素[J]. 分析科学学报, 2018,34(1):37-42.
|
[21] |
陈博雯, 刘海龙, 陈晓明 , 等. 高效液相色谱法分离和测定油茶茎尖组织中4 种内源激素[J]. 山东农业科学, 2012,44(3):105-107.
|
[22] |
文婷婷, 王洋, 利站 , 等. 豌豆种皮结构和成分对种子透水性的影响[J]. 种子, 2016,35(1):19-25.
|
[23] |
徐亮, 李建东, 殷萍萍 , 等. 野生大豆种皮形态结构和萌发特性的研究[J]. 大豆科学, 2009,28(4):641-646.
|
[24] |
|
[25] |
|
[26] |
陈博雯, 刘海龙, 陈晓明 , 等. 2个油茶品种种子萌发过程中激素生理初探[J]. 山西农业科学, 2012,40(8):840-843.
|
[27] |
张雁明, 卜海燕, 赵迪矮 , 等. 金莲花种子吸胀过程中内源激素含量的变化[J]. 植物资源与环境学报, 2018,27(4) : 104-106.
|
[28] |
|
[29] |
|
[30] |
郑秀珍 . 紫穗槐和刺槐种子萌发过程中内源激素含量及相关酶活性的动态变化[J]. 长江大学学报自科版(农学卷), 2006,3(3):163-165.
|
/
〈 |
|
〉 |