
Pilodyn和Resistograph对湿地松活立木基本密度的评估
丁显印, 陶学雨, 刁姝, 栾启福, 姜景民
南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (3) : 142-148.
Pilodyn和Resistograph对湿地松活立木基本密度的评估
Estimation of wood basic density in a Pinus elliottii stand using Pilodyn and Resistograph measurements
木材基本密度是决定松类人工林木材质量的重要性状。Pilodyn和Resistograph检测方法均是活立木基本密度无损评估方法,建立基于两种方法的湿地松基本密度评估模型,对两种检测方法进行对比分析,为湿地松活立木基本密度估测和育种提供技术支撑。
以24年生84株湿地松活立木为材料,利用Pilodyn和Resistograph两种无损检测方法快速测定各单株的密度相关值,同时通过分析Resistograph数据,计算单株年轮宽度及密度相对值;采用生长锥钻取木芯,按体积法测量对应湿地松木材基本密度,分析该密度值与两种无损检测设备测定结果的相关性,建立基于两种无损检测的密度预测模型,并评估两种无损检测的优点和局限性。
Pilodyn值与湿地松木材基本密度呈显著负相关(R=-0.30,P<0.01);Resistograph振幅与湿地松木材基本密度呈极显著正相关(R=0.50,P<0.001)。Pilodyn探针探测深度为20 mm左右,但与阻力测定值相关系数较大的活立木外侧木材深度达到50 mm左右(外侧10 a左右树龄部分),从树龄10 a的年轮部位到髓心部位木材密度值与阻力测定值相关性逐渐降低。Resistograph能穿透立木胸径部位,全部年轮振幅值与木材基本密度均呈显著正相关,其中树龄5~18 a相关系数为0.42~0.58(P< 0.001),其他各年份相关性均达到P< 0.05的显著水平。Resistograph能够评估年轮宽度及年轮内密度,Pilodyn不具备该功能。树龄8~20 a(除树龄12 a外)密度与年轮宽度为正相关,其余年份为负相关,表明Resistograph在剖析径向生长规律方面具有潜力。
Resistograph和Pilodyn检测方法均具有快速、无损的优点,均可用于间接评估湿地松活立木基本密度。Resistograph比Pilodyn检测更精确,与湿地松木材基本密度相关性更强,并且可以剖析径向年轮生长和基本密度的年度变化;Pilodyn则没有这个功能,但是Pilodyn在设备经济性及使用简易性上仍然具有优势。湿地松木材基本密度与生长性状的相关关系与树龄有关,不同生长期木材密度差异较大,早期密度相对较低。
The vrood basic density is an important improved character to determine the wood quality of pine plantation. Pilodyn and Resistograph are non-destructive assessment tools for basic density of living trees. Establishment of basic density assessment model of Pinus elliottii based on two methods and comparison of the advantages and disadvantages of the two methods can be beneficial for estimating the basic density of living trees in breeding programms of Pinus elliottii.
Eighty-four Pinus elliottii trees aged 24 years were measured at breast height using Pilodyn, Resistograph, and increment borer. Resistograph amplitudes (AE), width of each ring (RE), and P value were recorded by Resistograph and Pilodyn methods, respectively. Wood basic density (ρ) was determined by increment coring. Correlation analyses of Pilodyn P values, AE, RE and ρ were performed.
Pilodyn P values were significantly negatively correlated with ρ (R =-0.30, P < 0.01). AE was positively correlated with ρ (R = 0.50, P < 0.001). The strength of the correlation of AE and Pilodyn P values increased from the 24th ring to the 10th ring and then decreased from 10th to the pitch, suggesting accurate estimation of ρ by Pilodyn measurements; however, prediction of wood density in trees with large diameters was poor. AE was positively correlated with ρ in general and produced a significant positive correlation (P<0.001) with ρ in rings produced from between 5 and 18 years of age. The correlation of AE and RE as measured using the Resistograph was positive between the 8th and the 20th rings, apart from the 12th ring; however, other coefficients of correlation of AE and RE were negative. No corresponding results were obtained using the Pilodyn.
The Resistograph and Pilodyn devices can be used to indirectly and non-destructively assess basic density of Pinus elliottii, and although the Resistograph is more accurate for estimating basic density of Pinus elliottii wood, the Pilodyn has advantages regarding ease of use. Basic density of Pinus elliottii is high in mature wood (older than 8 years) and is relatively low in young wood.
湿地松 / Resistograph / Pilodyn / 木材基本密度 / 无损评估技术
Pinus elliottii / Resistograph / Pilodyn / wood basic density / non-destructive test
1 | ISIK F,LI B L.Rapid assessment of wood density of live trees using the Resistograph for selection in tree improvement programs[J].Can J For Res,2003,33(12):2426-2435.DOI:10.1139/x03-176. |
2 | ECHOLS R M.Uniformity of wood density assessed from X?rays of increment cores[J].Wood Sci Technol,1973,7(1):34-44.DOI:10.1007/bf00353377. |
3 | CHAN J M,RAYMOND C A,WALKER J C.Non?destructive assessment of green density and moisture condition in plantation?grown radiata pine (Pinusradiata D.Don.) by increment core measurements[J].Holzforschung,2010,64(4):521-528.DOI:10.1515/hf.2010.067. |
4 | 张厚江,管成,文剑.木质材料无损检测的应用与研究进展[J].林业工程学报,2016,1(6):1-9. |
4 | ZHANG H J,GUAN C,WEN J. Applications and research development of nondestructive testing of wood based materials[J].Journal of Forestry Engineering,2016,1(6):1-9.DOI:10.13360/j.issn.2096-1359.2016.06.001. |
5 | 殷亚方,王莉娟,姜笑梅.Pilodyn方法评估阔叶树种人工林立木的基本密度[J].北京林业大学学报,2008,30(4):7-11. |
5 | YIN Y F,WANG L J,JANG X M.Use of Pilodyn tester for estimating basic density in standing trees of hardwood plantation[J].J Beijing For Univ,2008,30(4):7-11. DOI:10.13332/j.1000-1522.2008.04.019. |
6 | COWN D J. Comparison of the Pilodyn and Torsiometer methods for the rapid assessment of wood density in living trees[J]. New Zealand Journal of Forestry Science, 1978, 8(3):384-91. |
7 | TAYLOR F.Notes:rapid determination of southern pine specific gravity with a pilodyn tester[J].Forest Science,1981,27(1):59-61. |
8 | WATT M S, GARNETT B T, JCF W. The use of the Pilodyn for assessing outerwood density in New Zealand Radiata pine[J]. Forest Products Journal, 1996, 11(11/12):101-106.DOI:10.1016/S0378-1127(96)03878-9. |
9 | GREAVES B L,BORRALHO N M G,RAYMOND C A,et al.Use of a Pilodyn for the indirect selection of basic density in Eucalyptus nitens[J].Can J For Res, 1996,26(9):1643-1650.DOI:10.1139/x26-185. |
10 | COSTA E S J C, BORRALHO N M G, Wellendorf H. Genetic parameter estimates for diameter growth, pilodyn penetration and spiral grain in Picea abies (L.) Karst.[J]. Silvae Genetica, 2000, 49(1):29-36. |
11 | 梁保松,朱景乐,王军辉,等.Pilodyn在华山松活立木木材材性估测中的应用[J].南京林业大学学报(自然科学版),2008,32(6):97-101. |
11 | LIANG B S,ZHU J L,WANG J H,et al.The application of the Pilodyn to assess wood traits of living trees in Pinus armandii[J].J Nanjing For Univ (Nat Sci Ed),2008,32(6):97-101.DOI:10.3969/j.issn.1000-2006.2008.06.022. |
12 | 张瑛春,王军辉,张守攻,等.Pilodyn和日本落叶松材性指标的关系[J].林业科学,2010,46(7):114-119. |
12 | ZHANG Y C,WANG J H, ZHANG S G, et al. Relationship between the pilodyn penetration and wood property of Larixkaempferi[J].Sci Silvae Sin,2010,46(7):114-119. |
13 | 栾启福,卢萍,井振华,等.Pilodyn评估杂交松活立木的基本密度及其性状相关分析[J].江西农业大学学报,2011,33(3):548-552. |
13 | LUAN Q F,LU P,JING Z H,et al.Assessment of wood basic density for standing trees of hybrid pines by Pilodyn and the correlation analysis of several traits[J].Acta Agric Univ Jiangxiensis,2011,33(3):548-552.DOI:10.13836/j.jjau. 2011098. |
14 | 朱磊,张厚江,孙燕良,等.基于应力波和微钻阻力的红松类木构件力学性能的无损检测[J].南京林业大学学报(自然科学版),2013,37(2):156-158. |
14 | ZHU L,ZHANG H J,SUN Y L,et al.Mechanical properties non?destructive testing of wooden components of Korean pine based on stress wave and micro?drilling resistance[J].J Nanjing For Univ (Nat Sci Ed),2013,37(2):156-158.DOI:10.3969/j.issn.10000-2006.2013.02.028. |
15 | 赵奋成,郭文冰,钟岁英,等.基于针刺仪测定技术的湿地松木材密度间接选择效果[J].林业科学,2018,54(10):172-179. |
15 | ZHAO F C,GUO W B,ZHONG S Y,et al.Effects of indirect selection on wood density based on resistograph measurement of slash pine[J].Sci Silvae Sin,2018,54(10):172-179.DOI:10.11707/j.1001-7488.20181020. |
16 | 宋朝枢. 世界松属种类及我国引种国外松的概况[J]. 北京林业大学学报,1983,5(2):1-11. |
16 | SONG Z S. Species of Pinus in the world and introduction of Pinus in China [J]. J Beijing For Univ, 1983,5(2):1-11. |
17 | 张帅楠,栾启福,姜景民.基于无损检测技术的湿地松生长及材性性状遗传变异分析[J].林业科学,2017,53(6):30-36. |
17 | ZHANG S N,LUAN Q F,JIANG J M.Genetic variation analysis for growth and wood properties of slash pine based on the non?destructive testing technologies[J].Sci Silvae Sin,2017,53(6):30-36.DOI:10.11707/j.1001-7488.20170604. |
18 | ZHANG S N,JIANG J M,LUAN Q F.Index selection for growth and construction wood properties in Pinuselliottii open?pollinated families in Southern China[J].South For:a J For Sci,2018,80(3):209-216.DOI:10.2989/20702620.2017.1334177. |
19 | 成俊卿. 木材学[M]. 北京: 中国林业出版社,1985. |
19 | CHENG J Q. Wood science [M]. Beijing: China Forestry Publishing House, 1985. |
20 | FUNDOVA I, FUNDA T, WU H X. Non?destructive wood density assessment of Scots pine (Pinus sylvestris L.) using Resistograph and Pilodyn[J].PLoS ONE,2018,13(9):e0204518. |
21 | CHEN Z Q,KARLSSON B,LUNDQVIST S O,et al.Estimating solid wood properties using Pilodyn and acoustic velocity on standing trees of Norway spruce[J].Ann For Sci,2015,72(4):499-508.DOI:10.1007/s13595-015-0458-9. |
22 | FUKATSU E,TAMURA A,TAKAHASHI M,et al.Efficiency of the indirect selection and the evaluation of the genotype by environment interaction using Pilodyn for the genetic improvement of wood density in Cryptomeriajaponica[J].J For Res,2011,16(2):128-135.DOI:10.1007/s10310-010-0217-6. |
23 | WU S J,XU J M,LI G Y,et al.Use of the pilodyn for assessing wood properties in standing trees of Eucalyptus clones[J].J For Res,2010,21(1):68-72.DOI:10.1007/s11676-010-0011-5. |
24 | LEHNEBACH R,BOSSU J,VA S,et al.Wood density variations of legume trees in French Guiana along the shade tolerance continuum:heartwood effects on radial patterns and gradients[J].Forests,2019,10(2):80.DOI:10.3390/f10020080. |
25 | 魏鸿昌.基于Resistograph数据树木年轮对不同种植密度的响应[D].南京:南京林业大学,2018. |
25 | WEI H C.Response of tree rings to different planting densities based on the data of resistograph[D].Nanjing:Nanjing Forestry University,2018. |
26 | 王莉娟.无损检测方法评估人工林杨树木材性质的研究[D].北京:北京林业大学,2005. |
26 | WANG L J.Study on evaluating wood properties of poplar plantation using non?destructive testing methods[D].Beijing:Beijing Forestry University,2005. |
27 | UKRAINETZ N K,O’NEILL G A.An analysis of sensitivities contributing measurement error to Resistograph values[J]. J For Res,2010,40(4):806-811.DOI:10.1139/x10-019. |
/
〈 |
|
〉 |