南京林业大学学报(自然科学版) ›› 2020, Vol. 44 ›› Issue (6): 193-200.doi: 10.3969/j.issn.1000-2006.201910005
丁思惠1(), 方升佐1,2,*(
), 田野1,2, 宋子琪2, 张艳华2
收稿日期:
2019-10-09
修回日期:
2020-05-08
出版日期:
2020-11-30
发布日期:
2020-12-07
通讯作者:
方升佐
基金资助:
DING Sihui1(), FANG Shengzuo1,2,*(
), TIAN Ye1,2, SONG Ziqi2, ZHANG Yanhua2
Received:
2019-10-09
Revised:
2020-05-08
Online:
2020-11-30
Published:
2020-12-07
Contact:
FANG Shengzuo
摘要:
【目的】通过对不同热解温度下杨树树叶、树枝、树皮生物质炭和秸秆生物质炭的理化特性及结构进行分析,筛选出更适用于林地土壤改良的农林废弃物种类和热解温度。【方法】以杨树不同组分树叶、树枝、树皮和秸秆等4种农林废弃物为原料,分别在300、500和700 ℃温度下制备生物质炭,测定其产率、pH、全碳、全氮含量、阳离子交换量(CEC)、比表面积和表面官能团等指标。【结果】随着热解温度的升高,4种原料生物质炭的产率逐渐降低,灰分含量和pH升高。同一热解温度下,树枝和树皮生物质炭的全碳含量高于树叶和秸秆生物质炭的,而全氮(TN)、全磷(TP)和全钾(TK)含量均低于树叶和秸秆生物质炭的。4种生物质炭水溶性盐基离子含量和交换性盐基离子含量均随着热解温度的升高而增加,树叶生物质炭的阳离子交换量总体高于其他3种原料的生物炭。树叶和树皮生物质炭的比表面积和总孔容积总体大于树枝和秸秆生物质炭,树皮和树叶生物质炭在700 ℃时比表面积分别高达597.02和121.01 m2/g。4种原料生物质炭的表面官能团种类基本相同,以芳香骨架为主,表面官能团数量均随着热解温度的升高而减少,芳香化程度增强。【结论】在不同热解温度和原料制备的生物质炭中,树叶和秸秆生物质炭的灰分、pH、N、K和盐基离子含量较高,比较适用于改良酸性土壤,增加土壤养分;而杨树树枝和树皮生物质炭含碳量较高,则适用于土壤固碳,提高土壤有机质含量。其中,500 ℃热解的杨树树叶生物质炭综合性能最好,氮、磷、钾养分耗失最少,阳离子交换能力较强,比表面积大,更适用于土壤改良。
中图分类号:
丁思惠,方升佐,田野,等. 不同热解温度下杨树各组分生物质炭的理化特性分析与评价[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 193-200.
DING Sihui, FANG Shengzuo, TIAN Ye, SONG Ziqi, ZHANG Yanhua. Analysis and evaluation on physicochemical properties of poplar biochar at different pyrolysis temperatures[J].Journal of Nanjing Forestry University (Natural Science Edition), 2020, 44(6): 193-200.DOI: 10.3969/j.issn.1000-2006.201910005.
表1
不同热解温度下的生物质炭主要营养元素的差异"
原料类型 feedstock type | 热解温度/ ℃ pyrolysis temperature | c(TC)/ % | c(TN)/ % | c(TP)/ (g·kg-1) | c(TK)/ (g·kg-1) |
---|---|---|---|---|---|
树叶LB | 300 | 51.56±0.17 h | 1.89±0.02 a | 1.27±0.12 i | 9.61±0.41 e |
500 | 55.61±0.74 g | 1.82±0.03 a | 2.75±0.13 g | 16.65±0.66 c | |
700 | 57.22±0.62 f | 1.63±0.06 a | 3.27±0.14 e | 18.37±0.57 c | |
树枝TB | 300 | 65.80±0.95 c | 1.08±0.00 b | 2.27±0.06 h | 9.20±0.12 f |
500 | 75.25±0.42 b | 1.15±0.01 b | 3.39±0.28 d | 12.55±0.45 d | |
700 | 77.44±0.41 a | 1.18±0.07 b | 3.73±0.03 b | 14.68±0.03 d | |
树皮BB | 300 | 63.78±0.73 c | 0.70±0.06 c | 0.61±0.02 l | 5.21±0.04 h |
500 | 72.67±0.89 b | 0.75±0.08 c | 0.88±0.03 k | 8.55±1.38 g | |
700 | 78.57±0.33 a | 0.89±0.06 c | 0.95±0.14 j | 7.65±0.08 g | |
秸秆SB | 300 | 57.31±0.21 f | 2.06±0.03 a | 3.05±0.25 f | 38.08±0.42 b |
500 | 60.63±0.48 e | 1.73±0.02 a | 3.47±0.36 c | 48.42±0.42 a | |
700 | 62.61±0.59 d | 1.65±0.05 a | 4.53±0.14 a | 47.70±1.59 a |
表2
不同热解温度下的4种原料生物质炭盐基离子含量及阳离子交换量的差异"
原料类型 feedstock type | 热解温度/ ℃ pyrolysis temperature | 盐基离子含量/(cmol·kg-1) base cations | 阳离子交换量/ (cmol·kg-1) cation exchange capacity | |
---|---|---|---|---|
水溶性 soluble | 交换性 exchangeable | |||
树叶LB | 300 | 36.46±3.67 f | 35.35±1.70 c | 28.55±3.53 bc |
500 | 44.52±5.16 f | 43.74±2.83 bc | 32.87±3.11 b | |
700 | 74.43±8.68 d | 50.83±6.73 b | 23.74±2.08 c | |
树枝TB | 300 | 16.12±2.16 h | 21.37±2.21 d | 21.11±2.58 c |
500 | 20.85±3.18 h | 31.35±6.06 c | 19.64±2.39 c | |
700 | 31.55±0.46 g | 66.72±1.63 a | 23.68±2.12 c | |
树皮BB | 300 | 24.13±1.26 g | 30.37±3.37 c | 18.99±0.91 d |
500 | 34.64±5.85 g | 40.65±2.33 c | 43.90±2.52 a | |
700 | 66.70±6.08 e | 42.14±3.35 c | 12.61±0.46 d | |
秸秆SB | 300 | 96.04±4.21 c | 39.52±4.83 c | 20.78±0.88 c |
500 | 111.65±0.60 b | 53.54±2.53 b | 23.02±2.01 c | |
700 | 123.98±2.59 a | 53.68±6.28 b | 24.24±1.37 c |
表3
不同热解温度下生物质炭的比表面积和孔隙 结构差异"
原料 类型 feedstock type | 热解温 度/℃ pyrolysis tempe- rature | 比表 面积/ (m2·g-1) specific surface area | 总孔 容积/ (cm3·g-1) total pore volume | t-plot 微孔 面积/ (m2·g-1) t-plot micropore area | t-plot 微孔 体积/ (cm3·g-1) t-plot micropore volume |
---|---|---|---|---|---|
树叶LB | 300 | 10.06 | 0.01 | 0 | 0 |
500 | 35.61 | 0.04 | 0 | 0 | |
700 | 121.01 | 0.05 | 9.91 | 0.005 0 | |
树枝TB | 300 | 12.14 | 0.01 | 0 | 0 |
500 | 17.49 | 0.02 | 0.26 | 0.000 2 | |
700 | 27.43 | 0.02 | 0.85 | 0.000 5 | |
树皮BB | 300 | 11.10 | 0.01 | 0.20 | 0.000 1 |
500 | 19.07 | 0.02 | 0.32 | 0.000 2 | |
700 | 597.02 | 0.08 | 90.29 | 0.048 0 | |
秸秆SB | 300 | 4.51 | 0.01 | 2.30 | 0.001 0 |
500 | 7.52 | 0.01 | 8.54 | 0.004 0 | |
700 | 25.93 | 0.02 | 0.95 | 0.001 0 |
[1] | MATOVICD. Biochar as a viable carbon sequestration option:global and Canadian perspective[J]. Energy, 2011,36(4):2011-2016.DOI: 10.1016/j.energy.2010.09.031. |
[2] | 周建斌, 周秉亮, 马欢欢, 等. 生物质气化多联产技术的集成创新与应用[J]. 林业工程学报, 2016,1(2):1-8. |
ZHOU J B, ZHOU B L, MA H H, et al. Integrated innovation and application of biomass gasification poly-generation technology[J]. J For Eng, 2016,1(2):1-8. DOI: 10.13360/j.issn.2096-1359.2016.02.001. | |
[3] | 陈温福, 张伟明, 孟军. 生物炭与农业环境研究回顾与展望[J]. 农业环境科学学报, 2014,33(5):821-828. |
CHEN W F, ZHANG W M, MENG J. Biochar and agro-ecological environment:review and prospect[J]. J Agro-Envir Sci, 2014,33(5):821-828. | |
[4] | 张旭辉, 李治玲, 李勇, 等. 施用生物炭对西南地区紫色土和黄壤的作用效果[J]. 草业学报, 2017,26(4):63-72. |
ZHANG X H, LI Z L, LI Y, et al. Effect of biochar amendment on purple and yellow soil[J]. Acta Prataculturae Science, 2017,26(4):63-72.DOI: 10.11686/cyxb2016367. | |
[5] | 徐艺倩, 薛建辉, 吴永波, 等. 施用稻壳炭对黄棕壤氮磷淋失及微生物生物量碳氮含量的影响[J]. 南京林业大学学报(自然科学版), 2017,41(3):22-28. |
XU Y Q, XUE J H, WU Y B, et al. Effects of rice husk biochar application on nitrogen and phosphorus leaching and microbial biomass carbon and nitrogen content in yellow brown soil[J]. J Nanjing For Univ (Nat Sci Ed), 2017,41(3):22-28.DOI: 10.3969/j.issn.1000-2006.201605006. | |
[6] | YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol[J]. Soil Use Manag, 2011,27(1):110-115.DOI: 10.1111/j.1475-2743.2010.00317.x. |
[7] | 何绪生, 张树清, 佘雕, 等. 生物炭对土壤肥料的作用及未来研究[J]. 中国农学通报, 2011,27(15):16-25. |
HE X S, ZHANG S Q, SHE D, et al. Effects of biochar on soil and fertilizer and future research[J]. Chinese Agric Sci Bull, 2011,27(15):16-25. | |
[8] | 王国兵, 徐瑾, 王瑞, 等. 添加生物炭对东台滨海区杨树人工林3种温室气体排放的长期影响[J]. 生态环境学报, 2019,28(6):1152-1158. |
WANG G B, XU J, WANG R, et al. Long term effects of biochar addition on three greenhouse gases emission under a poplar plantation in Dongtai coastal region[J]. Ecology and Environmental Sciences, 2019,28(6):1152-1158.DOI: 10.16258/j.cnki.1674-5906.2019.06.010. | |
[9] | 张隐, 魏留洋, 卢利明, 等. CNC负载ZnO纳米复合材料的吸附-光催化性能[J]. 林业工程学报, 2020,5(3):29-35. |
ZHANG Y, WEI L Y, LU L M, et al. Adsorption-photocatalytic properties of cellulose nanocrystal supported ZnO nanocomposites[J]. Journal For Eng, 2020,5(3):29-35.DOI: 10.13360/ j.issn.2096-1359.201907044. | |
[10] | 方升佐. 中国杨树人工林培育技术研究进展[J]. 应用生态学报, 2008,19(10):2308-2316. |
FANG S Z. Silviculture of poplar plantation in China:a review[J]. Chinese J Appl Eco, 2008,19(10):2308-2316.DOI: 10.13287/j.1001-9332.2008.0396. | |
[11] | YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresour Technol, 2011,102(3):3488-3497.DOI: 10.1016/j.biortech.2010.11.018. |
[12] | GASKIN J W, STEINERC, HARRIS K, et al. Effect of low-temperature pyrolysis conditions on biochar for agricultural use[J]. Trans ASABE, 2008,51(6):2061-2069.DOI: 10.13031/2013.25409. |
[13] | CAGNON B, PY X, GUILLOT A, et al. Contributions of hemicellulose,cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors[J]. Bioresource Technol, 2009,100(1):292-298.DOI: 10.1016/j.biortech.2008.06.009. |
[14] | ANGIN D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake[J]. Bioresource Technol, 2013,128:593-597.DOI: 10.1016/j.biortech.2012.10.150. |
[15] | 裴继诚. 植物纤维化学[M]. 北京: 中国轻工业出版社, 2012: 13-18. |
PEI J C. Lignocellulosic chemistry[M]. Beijing: China Light Industry Press, 2012: 13-18. | |
[16] | 辛善志. 基于组分的生物质热分解及交互作用机制研究[D]. 武汉:华中科技大学, 2014. |
XIN S Z. Research on thermal decomposition and interaction mechanism of biomass based on its components[D]. Wuhan:Huazhong University of Science and Technology, 2014. | |
[17] | 余春江. 生物质热解机理和工程应用研究[D]. 杭州:浙江大学, 2000. |
YU C J. Research on biomass pyrolysis mechanism and engineering application[D]. Hangzhou:Zhejiang University, 2000. | |
[18] | 李莹. 杉木生物质炭特性及其对土壤碳稳定性影响的研究[D]. 福州:福建农林大学, 2018. |
LI Y. Study on the characteristics of chinese fir biochar and its effects on soil carbon stability[D]. Fuzhou:Fujian Agriculture and Forestry University, 2018. | |
[19] | 林珈羽, 张越, 刘沅, 等. 不同原料和炭化温度下制备的生物炭结构及性质[J]. 环境工程学报, 2016,10(6):3200-3206. |
LIN J Y, ZHANG Y, LIU Y, et al. Structure and properties of biochar under different materials and carbonization temperatures[J]. Chinese J Environ Eng, 2016,10(6):3200-3206.DOI: 10.12030/j.cjee.20150110. | |
[20] | 曹延珺, 徐华东, 王立海, 等. 土壤理化性质对腐朽红松根部土壤微生物数量的影响[J]. 森林工程, 2018,34(2):45-49. |
CAO Y J, XU H D, WANG L H, et al. Effect of soil physical-chemical properties on quantity of microorganisms in rhizospheric soil of rotten Korean pine[J]. Forest Engineering, 2018,34(2):45-49. DOI: 10.16270/j.cnki.slgc.2018.02.002. | |
[21] | 叶协锋, 周涵君, 于晓娜, 等. 热解温度对玉米秸秆炭产率及理化特性的影响[J]. 植物营养与肥料学报, 2017,23(5):1268-1275. |
YE X F, ZHOU H J, YU X N, et al. Effect of pyrolysis temperature on the yield and physicochemical properties of corn straw charcoal[J]. J Plant Nutr Fertil Sei, 2017,23(5):1268-1275.DOI: 10.11674/zwyf.16467. | |
[22] | 富丽, 徐先英, 付贵全, 等. 五种生物质炭的特性分析[J]. 干旱区资源与环境, 2019,33(9):202-208. |
FUL, XU X Y, FU G Q, et al. Characteristic analysis of five biochars[J]. J Arid Land Resour Environ, 2019,33(9):202-208.DOI: 10.13448/j.cnki.jalre.2019.257. | |
[23] | YUAN H R, LU T, ZHAO D D, et al. Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis[J]. J Mater Cycles and Waste Manag, 2013,15:357-361.DOI: 10.1007/s10163-013-0126-9. |
[24] | 孟李群, 张云鹏, 苏漳文, 等. 不同炭化温度下杉木生物炭产率及特性比较[J]. 福建林业科技, 2014,41(2):38-41. |
MENG L Q, ZHANG Y P, SU Z W, et al. Comparison of yield and characteristics of Chinese fir biochar at different carbonization temperatures[J]. J Fujian For Sci Technol, 2014,41(2):38-41.DOI: 10.13428/j.cnki.fjlk.2014.02.009. | |
[25] | 赵伟宁, 杨兴, 何丽芝, 等. 热解温度对典型南方木本园林废弃物生物质炭理化特性的影响[J]. 浙江农林大学学报, 2018,35(6):1007-1016. |
ZHAO W N, YANG X, HE L Z, et al. Effect of pyrolysis temperature on physical and chemical properties of biochars derived from typical southern woody garden waste[J]. J Zhejiang A&F Univ, 2018,35(6):1007-1016.DOI: 10.11833/j.issn.2095-0756.2018.06.003. | |
[26] | LEE J W, KIDDER M, EVANS B R, et al. Characterization of biochars produced from corn stovers for soil amendment[J]. Environ Sci Technol, 2010,44(20):7970-7974.DOI: 10.1021/es101337x. |
[27] | 王晓晨. 生物质热解炭性质比较及对白浆土汞赋存形态影响[D]. 哈尔滨:东北农业大学, 2015. |
WANG X C. Comparison of biomass pyrolysis charcoal properties and its influence on Mercury occurrence form of albic soil[D]. Harbin:Northeast Agricultural University, 2015. | |
[28] | ACIEGOPIETRI J C, BROOKES P C. Relationships between soil pH and microbial properties in a UK arable soil[J]. Soil Biol Biochem, 2008,40(7):1856-1861.DOI: 10.1016/j.soilbio.2008.03.020. |
[29] | SONG X D, XUE X Y, CHEN D Z, et al. Application of biochar from sewage sludge to plant cultivation:influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation[J]. Chemosphere, 2014,109:213-220.DOI: 10.1016/j.chemosphere.2014.01.070. |
[30] | 陈再明, 陈宝梁, 周丹丹. 水稻秸秆生物碳的结构特征及其对有机污染物的吸附性能[J]. 环境科学学报, 2013,33(1):9-19. |
CHEN Z M, CHEN B L, ZHOU D D. Structural characteristics of rice straw biochar and its adsorption performance for organic pollutants[J]. Acta Scientiae Circumstantiae, 2013,33(1):9-19.DOI: 10.13671/j.hjkxxb.2013.01.005. | |
[31] | 王国兵, 王瑞, 徐瑾, 等. 生物炭对杨树人工林土壤微生物生物量碳、氮、磷及其化学计量特征的影响[J]. 南京林业大学学报(自然科学版), 2019,43(2):1-6. |
WANG G B, WANG R, XU J, et al. Effects of biochar application on soil microbial biomass carbon, nitrogen, phosphorus and their stoichiometric characteristics in poplar plantations[J]. J Nanjing For Univ (Nat Sci Ed), 2019,43(2):1-6.DOI: 10.3969/j.issn.1000-2006.201803022. | |
[32] | 杨刚. 高灰基生物炭农用对镉污染的控制机制及生态风险评价[D]. 南京:南京大学, 2018. |
YANG G. Control mechanism and ecological risk assessment of high ash-based biochar agricultural use for cadmium pollution[D]. Nanjing:Nanjing University, 2018. | |
[33] | KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environ Sci and Technol, 2010,44(4):1247-1253.DOI: 10.1021/es9031419. |
[34] | CHEN B L, ZHOU D D, ZHU L Z. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures[J]. Environ Sci Technol, 2008,42(14):5137-5143.DOI: 10.1021/es8002684. |
[35] | INYANG M, GAO B, PULLAMMANAPPALLIL P, et al. Biochar from anaerobically digested sugarcane bagasse[J]. Bioresource Technol, 2010,101(22):8868-8872.DOI: 10.1016/j.biortech.2010.06.088. |
[36] | GRUBE M, LIN J G, LEE P H, et al. Evaluation of sewage sludge-based compost by FT-IR spectroscopy[J]. Geoderma, 2006,130(3/4):324-333.DOI: 10.1016/j.geoderma.2005.02.005. |
[37] | NOVAK J M, BUSSCHER W J, WATTS D W, et al. Short-term CO2 mineralization after additions of biochar and switchgrass to a typic Kandiudult[J]. Geoderma, 2010,154:281-288.DOI: 10.1016/j.geoderma.2009.10.014. |
[38] | ZHAO S X, JI Q, LI Z H, et al. Characteristics and mineralization in soil of apple-derived biochar produced at different temperatures[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(6):183-192,200.DOI: 10.6041/j.issn.1000-1298.2015.06.026. |
[39] | ERTUGAY N, MALKOC E. Adsorption isotherm,kinetic,and thermodynamic studies for methylene blue from aqueous solution by needles of Pinus sylvestris L.[J]. Polish Journal of Environmental Studies, 2014,23(6):1995-2006. |
[40] | 郑庆福, 王永和, 孙月光, 等. 不同物料和炭化方式制备生物炭结构性质的FTIR研究[J]. 光谱学与光谱分析, 2014,34(4):962-966. |
ZHENG Q F, WANG Y H, SUN Y G, et al. FTIR study on structural properties of biochar prepared by different materials and carbonization methods[J]. Spectrosc Spectr Anal, 2014,34(4):962-966.DOI: info:doi/10.3964/j.issn.1000-0593(2014)04-0962-05. | |
[41] | YANG H, XU R, XUE X M, et al. Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal[J]. J Hazard Mater, 2008,152(2):690-698.DOI: 10.1016/j.jhazmat.2007.07.060. |
[42] | ZHANG H, VORONEY R P, PRICE G W. Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations[J]. Soil Biol Biochem, 2015,83:19-28.DOI: 10.1016/j.soilbio.2015.01.006. |
[43] | LU H L, ZHANG W H, WANG S Z, et al. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis[J]. J Anal Appl Pyrol, 2013,102:137-143.DOI: 10.1016/j.jaap.2013.03.004. |
[1] | 颜铮明, 阮宏华, 廖家辉, 石珂, 倪娟平, 曹国华, 沈彩芹, 丁学农, 赵小龙, 庄鑫. 不同林龄杨树人工林地表甲虫群落多样性特征[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 236-242. |
[2] | 刘亚梅, 刘盛全, 周亮, 胡建军, 赵自成, 郑向丽. 8个杨树无性系/品种木材解剖特征及其径向变异模式[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 234-240. |
[3] | 张庆源, 田野, 王淼, 翟政, 周诗朝. 美洲黑杨与青杨杂交F1代苗期表型性状的分化及其类型划分[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 40-48. |
[4] | 崔皓, 韩建刚, 郭俨辉, 季淮, 朱咏莉, 李萍萍. 洪泽湖河湖交汇区典型杨树人工林碳通量月尺度变化特征[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 19-26. |
[5] | 王润松, 徐涵湄, 曹国华, 沈彩芹, 阮宏华. 施用沼液对杨树人工林细根形态特征的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 119-124. |
[6] | 王立超, 陈凤毛, 仇才楼, 唐进根, 丁学农, 任吉星. 坡面方胸材小蠹鉴定与风险分析[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 201-208. |
[7] | 王润松, 孙源, 徐涵湄, 曹国华, 沈彩芹, 阮宏华. 施用沼液对杨树人工林细根生物量的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 123-129. |
[8] | 马永春, 佘诚棋, 方升佐. 不同修枝方法对杨树人工林生长、光合叶面积和主干饱满度的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 137-142. |
[9] | 惠昊, 关庆伟, 王亚茹, 林鑫宇, 陈斌, 王刚, 胡月, 胡敬东. 不同森林经营模式对土壤氮含量及酶活性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 151-158. |
[10] | 花伟成, 田佳榕, 孙心雨, 徐雁南. 基于TLS数据的杨树削度方程建立及材积估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 41-48. |
[11] | 王瑞, 王国兵, 徐瑾, 徐晓. 凋落物与蚯蚓对杨树人工林土壤团聚体分布及其碳氮含量的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 25-29. |
[12] | 石文广, 李靖, 张玉红, 雷静品, 罗志斌. 7种杨树铅抗性和积累能力的比较研究[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 61-70. |
[13] | 王国兵, 徐瑾, 徐晓, 阮宏华, 曹国华. 蚯蚓与凋落物对杨树人工林土壤酶活性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 8-14. |
[14] | 杨瑞珍, 张焕朝, 胡立煌, 范之馨. 接种AMF及施氮对滨海盐土氮矿化的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 145-153. |
[15] | 何旭东, 郑纪伟, 孙冲, 何开跃, 王保松. 33个杨柳品种指纹图谱构建[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 35-42. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||