南京林业大学学报(自然科学版) ›› 2002, Vol. 26 ›› Issue (06): 54-56.doi: 10.3969/j.jssn.1000-2006.2002.06.014

• 研究论文 • 上一篇    下一篇

矩阵方程AX+XB=C的一种数值算法

杨明辉   

  1. 南京林业大学信息科学与技术学院;江苏 南京 210037
  • 出版日期:2002-12-18 发布日期:2002-12-18

A Parallel Numerical Solution of Lyapunov Matrix Equation AX+XB=C

YANG Minghui   

  1. College of Information Science and Technology Nanjing Forestry University,Nanjing 210037,China
  • Online:2002-12-18 Published:2002-12-18

摘要: <正>笔者对Lyapunov矩阵方程AX+XB=C的迭代解法提出了一种修正方案。采用了矩阵的相似变换和并行算法处理,给出了计算复杂性、速度增长倍数和并行处理效率的指标,并证明了该修正方案是可行、有效的。

Abstract: There is Lyapunov matrix equation AX+XB=C to be considered in many practical problems.Many papers give its theories and numerical methods.This paper presents a revised algorithm of iteration method for solving the Lyapunov matrix equation AX+XB=C.It uses matrix similarity transformation and parallel treatment and gives indexes of computer complex and speed multiplication and parallel efficiency.So,this algorithm proves feasible and efficient.

中图分类号: