基于ASTER遥感数据的杨树林分因子建模及制图研究

李明诗,谭莹,彭世揆

南京林业大学学报(自然科学版) ›› 2006, Vol. 30 ›› Issue (05) : 123-126.

PDF(3195343 KB)
PDF(3195343 KB)
南京林业大学学报(自然科学版) ›› 2006, Vol. 30 ›› Issue (05) : 123-126. DOI: 10.3969/j.jssn.1000-2006.2006.05.030
研究论文

基于ASTER遥感数据的杨树林分因子建模及制图研究

  • 李明诗,谭莹,彭世揆
作者信息 +

A Study on Modeling & Mapping for Poplar Stands’ Parameters Based on ASTER Remote Sensed Datasets

  • LI Ming shi, TAN Ying, PENG Shi-kui
Author information +
文章历史 +

摘要

<正>根据国内外林木抗旱性研究现状,综述了林木抵御干旱的机制、抗旱性指标、抗旱性鉴定技术、抗旱树种和优良种质选育等方面的研究进展,并就林木抗旱性研究领域存在的相关问题进行了讨论,指出机理性研究、常规方法与生物技术有机结合、根系研究、林木抗旱性选育、林木抗旱性的动态跟踪分析等与林木抗旱性相关的研究趋势。

Abstract

The methods of image fusion and transform, including PCA, wavelet based fusion, MNF and RBV transform etc. were executed to generate 37 feature bands on the basis of the ASTER original 9 bands. Coupling with observations of 48 poplar sample plots, traditional univariate regression models and regression tree models for average height, age and stem volume of poplar were cstablished respectively. After comparing the performance of models fit ring and grouud-truthing, it was found that regression tree models were superior to traditional univariate models in mapping spatial distribution of poplar stands’ parameters. Consequently, taking regression tree models to retrieve and map biophysical variables at a regional scale based on remote sensed data was more viable and reliable.

引用本文

导出引用
李明诗,谭莹,彭世揆. 基于ASTER遥感数据的杨树林分因子建模及制图研究[J]. 南京林业大学学报(自然科学版). 2006, 30(05): 123-126 https://doi.org/10.3969/j.jssn.1000-2006.2006.05.030
LI Ming shi, TAN Ying, PENG Shi-kui. A Study on Modeling & Mapping for Poplar Stands’ Parameters Based on ASTER Remote Sensed Datasets[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2006, 30(05): 123-126 https://doi.org/10.3969/j.jssn.1000-2006.2006.05.030
中图分类号: S757   

PDF(3195343 KB)

Accesses

Citation

Detail

段落导航
相关文章

/