南京林业大学学报(自然科学版) ›› 2008, Vol. 32 ›› Issue (01): 128-.doi: 10.3969/j.jssn.1000-2006.2008.01.031
唐燕飞1,2,3,王国兵1,阮宏华1*
出版日期:
2008-02-18
发布日期:
2008-02-18
基金资助:
TANG Yan-fei1,2,3, WANG Guo-bing1, RUAN Hong-hua1*
Online:
2008-02-18
Published:
2008-02-18
摘要: 土壤呼吸对温度变化的响应已成为生态学研究的重要内容之一。根据近年来国内外最新的研究资料,综合介绍了土壤呼吸对温度敏感性方面的研究现状与成果,分析和探讨存在的问题。温度是影响土壤呼吸的重要因子,土壤呼吸与温度之间相关关系密切,但土壤呼吸对温度变化的响应与机制仍不确定。模拟土壤呼吸对温度的敏感性模型有多种且在不断完善,但简单的Q10经验模型仍被普遍使用。土壤呼吸各来源对温度的敏感性贡献仍不明确。因此在今后的研究中,应规范统一土壤呼吸和温度的测定方法,明确各因子对土壤呼吸的影响,土壤呼吸的时空异质性,土壤呼吸各组分对土壤呼吸的贡献以及各组分对温度的敏感性。
中图分类号:
唐燕飞,王国兵,阮宏华. 土壤呼吸对温度的敏感性研究综述[J]. 南京林业大学学报(自然科学版), 2008, 32(01): 128-.
TANG Yan-fei, WANG Guo-bing, RUAN Hong-hua. A review on the sensitivity of soil respiration to temperature[J].Journal of Nanjing Forestry University (Natural Science Edition), 2008, 32(01): 128-.DOI: 10.3969/j.jssn.1000-2006.2008.01.031.
[1]Houghton J T, Ding Y, Griggs D J,? et al. Climate Change 2001: The Scientific Basis [M].Cambridge: Cambridge University Press,2001. [2]Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model [J].Nature,2000,480:184187. [3]Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? [J]. Biogeochemistry, 2000, 48(1): 2151. [4]Houghton J.全球变暖[M].戴晓苏,石广王,董 敏,等,译.北京:气象出版社,1994. [5]Houghton R A, Hackler J L, Lawrence K T. The U. S. carbon budget: contributions from land-use changes [J]. Science, 1999, 285: 547578. [6]Raich J W,? Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation [J]. Tellus B, 1992, 44(13): 8199. [7]Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle [J]. Biogeochemistry, 2000, 48(1): 720. [8]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997, 17(5): 469476. [9]马秀梅,朱 波,韩广轩,等.土壤呼吸研究进展[J].地球科学进展, 2004, 19: 491495. [10] Fang J Y. Global Ecology: Climate Change and Ecological Responses[M].Beijing:China Higher Education Press, Springer-Verlag,2000. [11]Townsend A R, Vitousek P M, Holland E A. Tropical soils dominate the short term carbon cycle feedbacks to atmospheric carbon dioxide[J]. Climate Change,1992, 22: 293303. [12]Li Yiqing, Ruan Honghua, Zou Xiaoming,et al. The response of major soil decomposers to landslide disturbance in a Puerto Rican rainforest[J]. Soil Science,2005, 1711(3): 202211. [13]Takahashi A, Hiyama T, Takahashi, H A, et al. Analytical estimation of the vertical distribution of CO2 production within soil: application to a Japanese temperate forest[J]. Agricultural and Forest Meteorology, 2004, 126(34): 223235. [14]黄承才,葛 滢,常 杰,等.中亚热带东部三种主要木本群落土壤呼吸的研究[J].生态学报, 1999, 19(3): 324328. [15]陈述悦,李 俊,陆佩玲,等. 华北平原麦田土壤呼吸特征[J].应用生态学报,2004, 15(9): 15521560. [16]Elberling B, Brandt K K. Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling [J]. Soil Biology & Biochemistry, 2003, 35(2): 263272. [17]Vogel J G, Valentine D W. Soil and root respiration in mature Alaskan black spruce forests that vary in soil organic matter decomposition rates [J]. Canadian Journal of Forest Research-Revue Canadienne de Research Foerstere, 2005, 35(1): 161174. [18]Peterjohn W T, Melillo J M, Steudller P A, et al. Response of trace gas fluxes and N availability to experimentally elevated soil temperatures [J]. Ecological Applications, 1994, 4: 617625. [19]Davidson E A, Trumbore S E, Amondson R.Biogeochemistry-soil warming and organic carbon content [J]. Nature, 2000, 408: 789790. [20]Love J E, Margulis L. Homeostatic tendencies of the earth atmosphere [J]. Origin of Life, 1974, 5: 93103. [21]Trumbore S E, Davidson E A, Camargo P B, et al. Below ground cycling of carbon in forests and pastures of eastern Amazonia [J]. Global Biogeochemical Cycles,1995,9: 515528. [22]杨 晶,黄建辉,詹学明,等.农牧交错区不同植物群落土壤呼吸的日动态观测与测定方法比较[J]. 植物生态学报, 2004, 28(3): 318325. [23]Giardina, C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil to not vary with temperature [J]. Nature, 2000, 404: 858861. [24]Thornley J H M, Cannell M G R. Soil carbon storage response to temperature: a hypothesis[J]. Annual Botany, 2001, 87: 591598. [25]Fang C, Smith P, Moncrieff, J B. Similar response of labile and resistant soil organic matter pools to changes in temperature[J]. Nature, 2005, 433: 5759. [26]Melillo M, Steaudler P A,Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system [J]. Science, 2002, 298(13): 21732176. [27]Rustad L E. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming [J]. Oecologia, 2001, 126: 543562. [28]Janssens I A, Pilegaard K. Large seasonal changes in Q10 of soil respiration in a beech forest [J]. Global Change Biology, 2003, 9(6): 911918. [29]Gulledge J, Schimel J P. Controls on soil carbon dioxide and methane fluxes in a variety of Taiga forest stands in Interior Alaska [J]. Ecosystems, 2000, 3: 269282. [30]Dorr H, Mǖnich K O. Annual variation in soil respiration in selected areas of the temperate zone [J]. Tellus, 1987, 39(B): 114121. [31]Van’t Hoff J H. Lectures on Theoretical and Physical Chemistry [M]. London:Edward Arnora,1898. [32]Boone R D, Nadelhoffer K J, Canary J D, et al. Root exert a strong influence on the temperature sensitivity of soil respiration [J]. Nature, 1998, 396: 570572. [33]Raich J W, Potter C S. Global patterns of carbon dioxide emissions form soils [J]. Global Biogeochemical Cycles,1999, 9: 2326. [34]Kirschbaum M U F. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage [J]. Soil Biology & Biochemistry, 1995, 27(6): 753760. [35]Lloyd J, Taylor I A. On the temperature dependence of soil respiration [J]. Functional Ecology, 1994, 8: 315323. [36]Qi Y, X M, Wu J G. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises [J]. Ecological Modelling,2002, 153: 131142. [37]Raich J W, Tufekcioglu A. Vegetation and soil respiration: correlations and controls[J]. Biogeochemistry, 2000, 48: 7190. [38]张崇邦,杨靖春.东北羊草草原不同植被类型土壤微生物呼吸速率的初步研究[J]. 应用生态学报,1996,7(3): 293298. [39]Lange O L, Green TGA. Lichens show that fungi can acclimate their respiration to seasonal changes in temperature [J]. Oecologia, 2005, 142(1): 1119. [40]Tarrant K A, Field S A, Langton S D. et al. Effects on earthworm populations of reducing pesticide use in arable crop rotations [J]. Soil Biology & Biochemistry, 1997, 29(3/4): 657661. |
[1] | 丛明珠, 刘琪璟, 孙震, 董淳超, 钱尼澎. 长白山北坡植物群落β多样性及其组分驱动因素分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 99-106. |
[2] | 曹荔荔, 阮宏华, 李媛媛, 倪娟平, 王国兵, 曹国华, 沈彩芹, 徐亚明. 不同林龄水杉人工林地表大型土壤动物群落特征比较研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 91-98. |
[3] | 张怡婷, 夏念和, 林树燕, 丁雨龙. 我国寒竹属空间分布特征及影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 107-114. |
[4] | 胡衍平, 刘卫东, 张珉, 陈明皋, 程勇, 魏志恒, 庞文胜, 吴际友. 山乌桕家系叶片叶色参数和色素含量及其解剖结构研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 123-133. |
[5] | 王一洁, 王璐冕, 丁真慧, 钱程, 曹加杰. 城市滨水绿地空间夏季微气候效应研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 233-241. |
[6] | 赵国扬, 洪波, 高俊平, 赵鑫, 黄洪峰, 徐彦杰. 菊属新品种‘雀欢’[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 254-255. |
[7] | 任佳辉, 高捍东, 陈哲楠, 李浩, 刘强, 陈澎军. 杂交新美柳苗对盐涝胁迫的生长和生理响应[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 57-66. |
[8] | 董亚文, 陈双林, 谢燕燕, 郭子武, 张景润, 汪舍平, 徐勇敢. 林下植被演替过程中毛竹和主要优势树种叶片建成成本变化特征[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 179-186. |
[9] | 徐薪璐, 孔淑鑫, 吕卓, 江帅君, 赵婉琪, 林树燕. 靓竹叶色表型叶片形态、结构与光合特性相关性研究[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 145-154. |
[10] | 曹永慧, 陈庆标, 周本智, 葛晓改, 王小明. 不同截雨干旱时间对毛竹叶片氮含量时空分布的影响[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 155-161. |
[11] | 隋夕然, 李军, 陈娟, 华军, 沈谦, 杨洪胜, 何前程, 李由, 王伟, 彭冶, 葛之葳, 张增信. 徐州市侧柏人工林群落不同演替阶段物种多样性变化[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 171-178. |
[12] | 尹华康, 张晋东, 黄金燕, 蒲冠桦, 毛泽恩, 周材权, 黄耀华, 付励强. 四川马边大风顶自然保护区大熊猫主食竹空间分布特征[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 187-193. |
[13] | 孔凡斌, 金晨涛, 徐彩瑶. 罗霄山地区生态系统服务与居民福祉耦合协调关系变化及其影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 245-254. |
[14] | 龚霞, 吴银明, 王海峰, 曾攀, 唐亚, 温铿, 焦文献. 花椒新品种‘蜀椒1号’[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 265-266. |
[15] | 吴桐, 王贤荣, 伊贤贵, 周华近, 陈洁, 李蒙, 陈祥珍, 高书成. 樱花新品种‘胭脂雪’[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 267-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||