南京林业大学学报(自然科学版) ›› 2008, Vol. 32 ›› Issue (01): 128-.doi: 10.3969/j.jssn.1000-2006.2008.01.031
唐燕飞1,2,3,王国兵1,阮宏华1*
出版日期:
2008-02-18
发布日期:
2008-02-18
基金资助:
TANG Yan-fei1,2,3, WANG Guo-bing1, RUAN Hong-hua1*
Online:
2008-02-18
Published:
2008-02-18
摘要: 土壤呼吸对温度变化的响应已成为生态学研究的重要内容之一。根据近年来国内外最新的研究资料,综合介绍了土壤呼吸对温度敏感性方面的研究现状与成果,分析和探讨存在的问题。温度是影响土壤呼吸的重要因子,土壤呼吸与温度之间相关关系密切,但土壤呼吸对温度变化的响应与机制仍不确定。模拟土壤呼吸对温度的敏感性模型有多种且在不断完善,但简单的Q10经验模型仍被普遍使用。土壤呼吸各来源对温度的敏感性贡献仍不明确。因此在今后的研究中,应规范统一土壤呼吸和温度的测定方法,明确各因子对土壤呼吸的影响,土壤呼吸的时空异质性,土壤呼吸各组分对土壤呼吸的贡献以及各组分对温度的敏感性。
中图分类号:
唐燕飞,王国兵,阮宏华. 土壤呼吸对温度的敏感性研究综述[J]. 南京林业大学学报(自然科学版), 2008, 32(01): 128-.
TANG Yan-fei, WANG Guo-bing, RUAN Hong-hua. A review on the sensitivity of soil respiration to temperature[J].Journal of Nanjing Forestry University (Natural Science Edition), 2008, 32(01): 128-.DOI: 10.3969/j.jssn.1000-2006.2008.01.031.
[1]Houghton J T, Ding Y, Griggs D J,? et al. Climate Change 2001: The Scientific Basis [M].Cambridge: Cambridge University Press,2001. [2]Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model [J].Nature,2000,480:184187. [3]Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? [J]. Biogeochemistry, 2000, 48(1): 2151. [4]Houghton J.全球变暖[M].戴晓苏,石广王,董 敏,等,译.北京:气象出版社,1994. [5]Houghton R A, Hackler J L, Lawrence K T. The U. S. carbon budget: contributions from land-use changes [J]. Science, 1999, 285: 547578. [6]Raich J W,? Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation [J]. Tellus B, 1992, 44(13): 8199. [7]Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle [J]. Biogeochemistry, 2000, 48(1): 720. [8]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997, 17(5): 469476. [9]马秀梅,朱 波,韩广轩,等.土壤呼吸研究进展[J].地球科学进展, 2004, 19: 491495. [10] Fang J Y. Global Ecology: Climate Change and Ecological Responses[M].Beijing:China Higher Education Press, Springer-Verlag,2000. [11]Townsend A R, Vitousek P M, Holland E A. Tropical soils dominate the short term carbon cycle feedbacks to atmospheric carbon dioxide[J]. Climate Change,1992, 22: 293303. [12]Li Yiqing, Ruan Honghua, Zou Xiaoming,et al. The response of major soil decomposers to landslide disturbance in a Puerto Rican rainforest[J]. Soil Science,2005, 1711(3): 202211. [13]Takahashi A, Hiyama T, Takahashi, H A, et al. Analytical estimation of the vertical distribution of CO2 production within soil: application to a Japanese temperate forest[J]. Agricultural and Forest Meteorology, 2004, 126(34): 223235. [14]黄承才,葛 滢,常 杰,等.中亚热带东部三种主要木本群落土壤呼吸的研究[J].生态学报, 1999, 19(3): 324328. [15]陈述悦,李 俊,陆佩玲,等. 华北平原麦田土壤呼吸特征[J].应用生态学报,2004, 15(9): 15521560. [16]Elberling B, Brandt K K. Uncoupling of microbial CO2 production and release in frozen soil and its implications for field studies of arctic C cycling [J]. Soil Biology & Biochemistry, 2003, 35(2): 263272. [17]Vogel J G, Valentine D W. Soil and root respiration in mature Alaskan black spruce forests that vary in soil organic matter decomposition rates [J]. Canadian Journal of Forest Research-Revue Canadienne de Research Foerstere, 2005, 35(1): 161174. [18]Peterjohn W T, Melillo J M, Steudller P A, et al. Response of trace gas fluxes and N availability to experimentally elevated soil temperatures [J]. Ecological Applications, 1994, 4: 617625. [19]Davidson E A, Trumbore S E, Amondson R.Biogeochemistry-soil warming and organic carbon content [J]. Nature, 2000, 408: 789790. [20]Love J E, Margulis L. Homeostatic tendencies of the earth atmosphere [J]. Origin of Life, 1974, 5: 93103. [21]Trumbore S E, Davidson E A, Camargo P B, et al. Below ground cycling of carbon in forests and pastures of eastern Amazonia [J]. Global Biogeochemical Cycles,1995,9: 515528. [22]杨 晶,黄建辉,詹学明,等.农牧交错区不同植物群落土壤呼吸的日动态观测与测定方法比较[J]. 植物生态学报, 2004, 28(3): 318325. [23]Giardina, C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil to not vary with temperature [J]. Nature, 2000, 404: 858861. [24]Thornley J H M, Cannell M G R. Soil carbon storage response to temperature: a hypothesis[J]. Annual Botany, 2001, 87: 591598. [25]Fang C, Smith P, Moncrieff, J B. Similar response of labile and resistant soil organic matter pools to changes in temperature[J]. Nature, 2005, 433: 5759. [26]Melillo M, Steaudler P A,Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system [J]. Science, 2002, 298(13): 21732176. [27]Rustad L E. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming [J]. Oecologia, 2001, 126: 543562. [28]Janssens I A, Pilegaard K. Large seasonal changes in Q10 of soil respiration in a beech forest [J]. Global Change Biology, 2003, 9(6): 911918. [29]Gulledge J, Schimel J P. Controls on soil carbon dioxide and methane fluxes in a variety of Taiga forest stands in Interior Alaska [J]. Ecosystems, 2000, 3: 269282. [30]Dorr H, Mǖnich K O. Annual variation in soil respiration in selected areas of the temperate zone [J]. Tellus, 1987, 39(B): 114121. [31]Van’t Hoff J H. Lectures on Theoretical and Physical Chemistry [M]. London:Edward Arnora,1898. [32]Boone R D, Nadelhoffer K J, Canary J D, et al. Root exert a strong influence on the temperature sensitivity of soil respiration [J]. Nature, 1998, 396: 570572. [33]Raich J W, Potter C S. Global patterns of carbon dioxide emissions form soils [J]. Global Biogeochemical Cycles,1999, 9: 2326. [34]Kirschbaum M U F. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage [J]. Soil Biology & Biochemistry, 1995, 27(6): 753760. [35]Lloyd J, Taylor I A. On the temperature dependence of soil respiration [J]. Functional Ecology, 1994, 8: 315323. [36]Qi Y, X M, Wu J G. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises [J]. Ecological Modelling,2002, 153: 131142. [37]Raich J W, Tufekcioglu A. Vegetation and soil respiration: correlations and controls[J]. Biogeochemistry, 2000, 48: 7190. [38]张崇邦,杨靖春.东北羊草草原不同植被类型土壤微生物呼吸速率的初步研究[J]. 应用生态学报,1996,7(3): 293298. [39]Lange O L, Green TGA. Lichens show that fungi can acclimate their respiration to seasonal changes in temperature [J]. Oecologia, 2005, 142(1): 1119. [40]Tarrant K A, Field S A, Langton S D. et al. Effects on earthworm populations of reducing pesticide use in arable crop rotations [J]. Soil Biology & Biochemistry, 1997, 29(3/4): 657661. |
[1] | 杨永. 裸子植物的系统分类:历史、现状和展望[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 14-26. |
[2] | 张瑞, 周正虎, 王传宽, 金鹰. 东北温带森林不同材性树种木质部解剖和水力性状[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 229-236. |
[3] | 黄永健, 荀航, 张保, 尤俊昊, 姚曦, 汤锋. HPLC同时测定竹笋中8种酚酸类物质含量的方法研究及其应用[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 237-244. |
[4] | 邓云飞. 安息香科的系统学研究进展[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 27-35. |
[5] | 李家亮, 巫大宇, 毛康珊. 柏木属的分类地位和物种多样性研究现状与建议[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 36-45. |
[6] | 李涌福, 杨庆华, 陈林, 张敏, 向其柏, 王贤荣, 段一凡. 木犀属内分组关系的分类修订[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 58-62. |
[7] | 杨皓, 刘超, 庄家尧, 张树同, 张文韬, 毛国豪. 不同载体菌肥对紫穗槐生长和光合特性及土壤养分的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 81-89. |
[8] | 丁咏, 刘鑫, 张金池, 王宇浩, 陈美玲, 李涛, 刘孝武, 周悦湘, 孙连浩, 廖艺. 酸雨类型转变对杉木林地土壤和细根生长的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 90-98. |
[9] | 武燕, 黄青, 刘讯, 郑睿, 岑佳宝, 丁波, 张运林, 符裕红. 西南喀斯特地区马尾松人工林林龄对土壤理化性质的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 99-107. |
[10] | 卜晓婷, 付威, 李淑娴, 徐志标, 彭大庆, 徐林桥. 幼化和外源激素对娜塔栎嫩枝扦插生根的影响及其生根解剖学观察[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 129-136. |
[11] | 杜晋城, 李欣欣, 王泽亮, 刘偲, 钟毅, 王丽华. 聚乙二醇胁迫下3个油橄榄品种生理指标响应[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 137-143. |
[12] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[13] | 张馨方, 王广鹏, 张树航, 李颖, 郭燕. 不同抗螨性板栗差异次生代谢物筛选与分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 234-240. |
[14] | 杨宏, 伊贤贵, 王贤荣, 吴桐, 周华近, 陈洁, 李蒙, 朱兆青. 樱花新品种‘元春’[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 275-276. |
[15] | 田梦阳, 朱树林, 窦全琴, 季艳红. 薄壳山核桃-茶间作对‘安吉白茶’速生期光合特性的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 86-96. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||