响叶杨光合蒸腾和水分利用效率对光强及CO2浓度升高的响应

王旭军,吴际友,廖德志,程勇

南京林业大学学报(自然科学版) ›› 2009, Vol. 33 ›› Issue (02) : 55.

PDF(805218 KB)
PDF(805218 KB)
南京林业大学学报(自然科学版) ›› 2009, Vol. 33 ›› Issue (02) : 55. DOI: 10.3969/j.jssn.1000-2006.2009.02.014
研究论文

响叶杨光合蒸腾和水分利用效率对光强及CO2浓度升高的响应

  • 王旭军,吴际友,廖德志,程勇
作者信息 +

Response of photosynthesis rate, transpiration rate and water using efficiency of Populus adenopoda to light intensity and elevated CO2 concentration

  • WANG Xujun, WU Jiyou, LIAO Dezhi, CHENG Yong
Author information +
文章历史 +

摘要

以2年生响叶杨幼树为试验材料,利用Li-6400便携式光合作用测定系统,对自然条件下响叶杨不同光合有效辐射(PAR)强度及不同CO2浓度(cCO2)处理下叶片光合及水分生理生态参数的变化特征进行了研究。结果表明:(1)400 μmol/mol CO2摩尔分数条件下,响叶杨叶片净光合速率(Pn)与PAR之间的回归方程为:yPn=-1.0×10-5x2PAR+0.030 3xPAR-1.103 1,相关系数可达0.988 2;光饱和点、光补偿点及表观量子效率分别为1 515 μmol/(m2·s)、55 μmol/(m2·s)和0045;叶片蒸腾速率(Tr)与PAR间回归方程:yTr=0.002 6xPAR+7.153 2,相关系数为0.878 6;叶片水分利用效率(WUE)与PAR间回归方程为:yWUE=-1.0×10-6x2PAR+0.003 5xPAR-0.093 3,相关系数为0.949 3。(2)PAR为1 000 μmol/(m2·s)的条件下,Pn与CO2摩尔分数(cCO2)之间回归方程为:yPn=2.0×10-5x2CO2+0.047 2xCO2-2.852 3,相关系数为0.950 2,CO2饱和点、补偿点及羧化速率分别为1 180 μmol/mol、64 μmol/mol和0.058,但随cCO2增加Tr呈无规则变化,且两者无明显的相关关系;WUE与cCO2之间的回归方程为:yWUE=3.0×10-6x2CO2+0.007 2xCO2-0.450 4,相关系数为0.926 3。

Abstract

Under the natural condition, the different intensities of photosynthetically active radiation (PAR) and different ranges of CO2 concentration, the characteristics of leaf photosynthesis and water ecophysiology of Populus adenopoda were studied to explore the response of photosynthesis, transpiration and water use efficiency to light intensity and elevated CO2 concentration by using twoyears old young trees as materials. The results were as following: (1) Under the condition of 400μmol/mol CO2, the regression equations between net photosynthesis rate (Pn) and PAR was yPn=-1.0×10-5x2PAR+0.030 3xPAR-1.103 1 with regression coefficient of 0.988 2; the light saturation point, light compensation point and apparent quantum yield (AQY) were 1 515 μmol/(m2·s), 55 μmol/(m2·s) and 0.045, respectively; the regression equation between transpiration rate (Tr) and PAR was yTr=0.002 6xPAR+7.153 2, which correlation coefficient is 0.878 6; and the regression equation between water using efficiency (WUE) and PAR was yWUE=-1.0×10-6x2PAR+0.003 5xPAR-0.093 3, and its correlation coefficient was 0949 3. (2) Under the condition of 1 000 μmol/(m2·s) PAR, the regression equation between Pn and CO2 concentration was yPn=2.0×10-5 x2CO2+0.047 2 xCO2-2.852 3 with r equaled to 0950 2, CO2 saturation point, CO2 compensation point and carboxylation efficiency were 1 180 μmol/mol, 64 μmol/mol and 0.058, respectively; However, Tr changed randomly with the increment of CO2 concentration, and there was no significant correlation between them; the regression equation between WUE and CO2 concentration was yWUE=3.0×10-6x2CO2+0007 2 xCO2-0.450 4 (r=0.926 3).

引用本文

导出引用
王旭军,吴际友,廖德志,程勇. 响叶杨光合蒸腾和水分利用效率对光强及CO2浓度升高的响应[J]. 南京林业大学学报(自然科学版). 2009, 33(02): 55 https://doi.org/10.3969/j.jssn.1000-2006.2009.02.014
WANG Xujun, WU Jiyou, LIAO Dezhi, CHENG Yong. Response of photosynthesis rate, transpiration rate and water using efficiency of Populus adenopoda to light intensity and elevated CO2 concentration[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2009, 33(02): 55 https://doi.org/10.3969/j.jssn.1000-2006.2009.02.014
中图分类号: S792.111   

参考文献

[1]王旭军,吴际友,程勇,等. 响叶杨良种繁育研究进展[J]. 湖南林业科技,2006,33(5):72-74.
[2]侯延侠. 响叶杨细胞学观察与染色体加倍技术研究[D]. 北京:北京林业大学,2007.
[3]周永斌,马学文,姚鹏,等. 不同生长速度杨树品种的光合生理特性研究[J]. 沈阳农业大学学报,2007,38(3):336-339.
[4]苏东凯,周永斌,唐庆华,等. 不同杨树品种光合生理生态特性的研究[J]. 西北林学院学报,2006,21(2):39-41.
[5]李静怡,张志毅. 三倍体毛白杨无性系光合特性的研究[J]. 北京林业大学学报,2000,22(6):12-15.
[6]苏培玺,张立新,杜明武,等. 胡杨不同叶形光合特性、水分利用效率及其对加富CO2的响应[J]. 植物生态学报,2003,27(1):34-40.
[7]张劲松,孟平,高峻. 板蓝根光合及水分生理生态特性[J]. 东北林业大学学报,2004,32(3):26-28.
[8]孟平,张劲松,高峻. 山茱萸幼树光合及水分生理生态特性[J]. 林业科学研究,2005,18(1):47-51.
[9]蔡志全,曹坤芳. 遮荫下两种热带树苗叶片光合特性和抗氧化酶系统对自然降温的响应[J]. 林业科学,2004,40(1):47-51.
[10]许大全,徐宝基,沈允钢. C3植物光合效率的日变化[J]. 植物生理学报,1990,16(1):1-5.
[11]Nijs I, Ferris, Blum H. Stomatal regulation in a changing climate: A field study using free air temperature increase (FATI) and free air CO2 enrichment (FACE)[J]. Plant, Cell and Environment, 1997, 20: 1041-1050.
[12]潘瑞炽. 植物生理学[M]. 5版. 北京:高等教育出版社,2004.
[13]邱国雄. 植物光合作用效率[C]//余叔文. 植物生理与分子生物学. 北京:科学技术出版社,1992.
[14]蒋高明,渠春梅. 北京山区辽东栎林中几种木本植物光合作用对CO2浓度升高的响应[J]. 植物生态学报,2000,24(2):204-208.
[15]Kimball B A, Idso S B. Increasing atmospheric CO2: effects on crop yield, water use and climate[J]. Agric Water Manage, 1983(7): 55-72.
[16]Tognettic R, Longobucco, Raschi A. Water relations of Quercus ilex and Quercus pubescentes trees grow close by a natural carbon dioxide in a mediterranean environment[C]//Raschi A, Vaccari F P, Miglietta F. Ecosystem Response to CO2: The MAPLE Project Results. Belgium: European Communities, 1999.
[17]李合生.现代植物生理学[M]. 北京:高等教育出版社,2002.
[18]Curtis P S, Wang X. A metaanalysis of elevated CO2 effects on woody plant mass, form, and physiology[J]. Oecolgia, 1998, 113: 299-313.

基金

收稿日期:2007-10-12修回日期:2008-05-11基金项目:国家“十一五”科技支撑计划(2006BAD03A1704);湖南省林业厅重点项目(2006-01)作者简介:王旭军(1971—),助理研究员,研究方向为林木遗传育种和城市林业。Email: xjwang0514@163.com引文格式:王旭军,吴际友,廖德志,等. 响叶杨光合蒸腾和水分利用效率对光强及CO2浓度升高的响应[J]. 南京林业大学学报:自然科学版,2009,33(2):55-59.

PDF(805218 KB)

Accesses

Citation

Detail

段落导航
相关文章

/