采用网袋法对台湾桤木与黑麦草复合模式下的细根和草根分解及养分释放进行了为期1年的研究。结果表明:直径0~1 mm、1~2 mm、0~2 mm台湾桤木细根、黑麦草草根、混合根(台湾桤木0~2 mm细根与草根质量比1∶1混合)的干质量残留率分别为39.47%、32.23%、37.11%、16.93%、24.05%,应用Olson指数方程模拟细根和草根的分解过程,拟合程度较好(p<0.01)。分解初期细根N、P、Ca的浓度存在上升趋势,K浓度则明显下降,Mg浓度变化平稳,草根和混合根N、K浓度变化趋势与细根的相同,其余的养分浓度与细根的浓度表现出不同规律。细根和草根分解过程中K、Mg、P的残留率与其干质量残留率变化相似,而N、Ca的残留率下降则较平缓;元素释放速率以K最快,其次为Mg、P、N,Ca最慢。混合处理的分解速率和N、P、K、Ca释放率介于单独分解的0~2 mm细根和草根相应释放率之间,而Mg释放率则大于单独分解的0~2 mm细根和草根的释放率。
Abstract
This study aims to investigate the rate of decomposition and nutrient dynamics of fine root and grass root in a complex ecosystem of Alnus formosanaLolium multiflorum with one year buried bag experiment. The yearly dry weight remaining rate were 39.47%, 32.23%, 37.11%, 16.93% and 24.05% for fine root 0—1 mm, 1—2 mm, 0—2 mm, grass root and mixed root respectively. The process of the decomposition of fine root and grass root was simulated by Olson exponential equation, which showed good degree of fitting (p<0.01). At the initial phase of fine root decomposition, N and P and Ca concentrations increased, while K concentration declined adversely, and the Mg concentration had fluctuated slightly. The concentration of N and K for grass root and mixed root had the same trend as fine root during the decomposition process. However, the other nutrient concentrations demonstrated different trend. The residual rate of K, Mg and P demonstrated the same trend as dry weight remaining rate during the decomposition process of fine root and grass root. On the contrary, the residual rate of N and Ca decreased slowly. The releasing rate of K was the most quickly among all the elements, and the next were Mg, P, N and Ca lied in the last. The decomposition rate of mixed process and the releasing rate of N, P, K and Ca approximately lied between the fine root (0—2 mm) which decomposed by itself and grass root. On the contrary, the releasing rate of Mg was larger than the fine root (0—2 mm) which decomposed by itself and grass root.
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]Jalota R K, Dalal R C, Harms B P, et al. Effects of litter and fine root composition on their decomposition in a Rhodic Paleustalf under different land uses[J]. Communications in Soil Science and Plant Analysis, 2006, 37: 1859-1875.
[2]Robinson C H, Kirkham J B, Littlewood R. Decomposition of root mixtures from high arctic plants: a microcosm study[J]. Soil Biology Biochemistry, 1999, 31: 1101-1108.
[3]范冰,李贤伟,张健,等. 退耕还林地三倍体毛白杨与黑麦草复合模式细根和草根的分解动态[J]. 林业科学,2007,43(增1):1-6.
[4]范冰,李贤伟,张健,等. 三倍体毛白杨黑麦草复合生态系统林木细根与草根的分解及养分动态[J]. 应用生态学报,2005,16(11):2030-2034.
[5]金钊,杨玉盛,懂云社,等. 福建万木林自然保护区米槠和杉木细根分解动态[J]. 地理研究,2007,26(3):491-499.
[6]廖利平,扬跃军,汪思龙,等. 杉木、火力楠纯林及混交林细根分布、分解与养分归还[J]. 生态学报,1999,19(3):342-346.
[7]张秀娟,吴楚,梅莉,等. 水曲柳和落叶松人工林根系分解与养分释放[J]. 应用生态学报,2006,17(8):1370-1376.
[8]Vogt K A, Vogt D J, Palmiotto P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species[J]. Plant and Soil, 1996, 187: 159-219.
[9]Ruess R W, Van Cleve K, Yarie J, et al. Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior[J]. Canadian Journal Forest Research, 1996, 26: 1326-1336.
[10]温达志,魏平,张佑昌,等. 鼎湖山南亚热带森林细根分解干物质损失和元素动态[J]. 生态学杂志,1998,17(2):1-6.
[11]Berg B, Berg M P, Bottner P, et al. Litter mass loss rates in pine forests of Europe and Eastern United States: Some relationships with climate and litter quality[J]. Biogeochemistry, 1993, 20: 127-159.
[12]杨效东, 邹晓明. 西双版纳热带季节雨林凋落叶分解与土壤动物群落:两种网孔分解袋的分解实验比较[J]. 植物生态学报,2006,30(5):791-801.
[13]董鸣,王义凤,孔繁志,等. 陆地生物群落调查观测与分析[M]. 北京:中国标准出版社,1996.
[14]Schuur E A G. The effect of water on decomposition dynamics in mesic to wet Hawaiian Montane forests[J]. Ecosystems, 2001, 4: 259-273.
[15]王敬,李贤伟,荣丽,等. 森林土壤氮贮量及氮素输入过程研究进展[J]. 世界林业研究,2008,21(1):14-19.
[16]单建平,陶大立,王淼,等. 长白山阔叶红松林细根动态[J]. 应用生态学报,1993,4(3):241-245.
[17]李培芝,范世华,王力华,等. 杨树细根及草根的生产力及周转研究[J]. 应用生态学报, 2001,12(6):829-832.
[18]陈光水,杨玉盛,何宗明,等. 福建柏和杉木人工林细根生产力、分布及周转的比较[J]. 林业科学,2004,40(4):15-21.
[19]杨玉盛,陈光水,林鹏,等. 格氏栲天然林与人工林细根生物量、季节动态及净生产力[J]. 生态学报,2003,23(9):1719-1730.
[20]Ruth D Y, Byung B P, Steven P H. The vertical and horizontal distribution of roots in northern hardwood stands of varying age[J]. Canadian Journal Forest Research, 2006, 36: 450-459.
[21]Agren G I, Bosatta E. Quality: A bridge between theory and experiment in soil organic matter studies[J]. Oikos, 1996, 76: 522-528.
[22]Moore T R, Trofymow J A. Litter decomposition rates in Canadian forests[J]. Global Change Biology, 1999, 5: 75-82.
[23]Scott N A, Binkley D. Foliage litter quality and annual net N mineralization: Comparison across North American forest sites[J]. Oecologia, 1997, 111: 151-159.
[24]Ostertag R, Hobbie S E. Early stages of root and leaf decomposition in Hawaiian forest: effect of nutrient availability[J]. Oecologia, 1999, 121: 564-573.
[25]翟明普,蒋三乃,贾黎明. 沙地杨树刺槐混交林细根动态[J]. 北京林业大学学报,2002,24(5):39-44.
[26]翟明普,蒋三乃,贾黎明. 杨树刺槐混交林细根养分动态研究[J]. 林业科学,2004,40(4):46-51.
基金
收稿日期:2008-07-24修回日期:2009-03-10基金项目:国家自然科学基金资助项目(30771717);国家“十一五”科技支撑计划(2006BAC01A11);教育部重点学科博士点基金(20050626001);四川省教育厅重点实验室资助项目(2006ZD006)作者简介:王敬(1983—),硕士。*李贤伟(通讯作者),教授,研究方向为恢复生态、细根生态及森林经营与管理。 Email: lxw@sicau.edu.cn。引文格式:王敬,李贤伟,张健,等. 台湾桤木与黑麦草复合模式细根和草根的