铜系甲醇催化剂受热后的结构变化

何刚1,高勤卫2

南京林业大学学报(自然科学版) ›› 2009, Vol. 33 ›› Issue (06) : 99.

南京林业大学学报(自然科学版) ›› 2009, Vol. 33 ›› Issue (06) : 99. DOI: 10.3969/j.jssn.1000-2006.2009.06.023
研究论文

铜系甲醇催化剂受热后的结构变化

  • 何刚1,高勤卫2
作者信息 +

Structure change of coppertype methanol catalyst after overheating

  • HE Gang1, GAO Qinwei2
Author information +
文章历史 +

摘要

采用电子能谱仪、X光衍射仪、吸附仪等物化仪器和化学分析法,对受热后铜系甲醇催化剂的结构进行研究。结果表明:经实验室高温处理后的催化剂晶粒度增大,比表面积下降,孔容下降;经工业使用后的催化剂晶粒度增大,比表面积和孔容均下降且比表面积和孔容的下降大于实验室样品。实验室过热实验的催化剂与工业使用后的催化剂在结构数据变化的趋势上相同,比表面积减小与催化活性降低存在相关的变化。因此,当气体充分净化后,杂质对催化剂的影响已经很小,此时催化剂过热使用导致催化剂结构变化是影响催化剂活性和使用寿命的主要原因。

Abstract

Study on the structure change of overheated coppertype methanol catalyst was carried out using electron spectroscopy, Xray diffraction, physical and chemical absorption analysis method. The results showed that the particle size of the overheated catalyst increased, but the specific surface area and pore volume decreased. After industrial use, the grain size of the catalyst increased, and the surface area and pore volume decreased more than those of the overheated catalyst in lab. Overheated catalyst in laboratory experiments and industrial use showed same change in the trend on structure. Surface area and catalyst activity decreased with associated changes. Because the impact of impurities on catalysts was very small under the condition of fully purified gas, the structural changes of catalyst were main reason of affecting the catalyst activity and life.

引用本文

导出引用
何刚1,高勤卫2. 铜系甲醇催化剂受热后的结构变化[J]. 南京林业大学学报(自然科学版). 2009, 33(06): 99 https://doi.org/10.3969/j.jssn.1000-2006.2009.06.023
HE Gang1, GAO Qinwei2. Structure change of coppertype methanol catalyst after overheating[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2009, 33(06): 99 https://doi.org/10.3969/j.jssn.1000-2006.2009.06.023
中图分类号: TQ203   

参考文献

[1]林长平,冷柏军. 煤炭液化在中国能源战略中的地位和作用[J]. 中国能源,2006,28(3):33-37.
[2]周清. C307型催化剂使用过程中结蜡原因分析及处理[J]. 中氮肥,2007(4):31-32.
[3]王莉. 合成甲醇催化剂的研究进展[J]. 化肥设计,2007,45(3):55-58.
[4]赵西坤. C307型甲醇合成催化剂使用总结[J]. 化肥工业,2006,33(4):36-38.
[5]张新凤. C307型中低压甲醇合成催化剂的工业应用[J]. 煤化工,2005(4):50-53.
[6]侯治会,张运宝,时桂荣. 催化剂在低压甲醇合成装置中的应用[J]. 化工生产与技术,2005,12(4):31-32.
[7]王志埃. C306型甲醇催化剂在我公司的应用[J]. 化学工业与工程技术,2005,26(3):51-52.
[8]孙丽波,包福军. MK—101甲醇合成催化剂装填技术的应用[J]. 化工时刊,2005,19(6):27-28.
[9]何刚. 硫氯共存对甲醇催化剂失活的影响[J]. 石油与天然气化工,2003,32(2):68-74.
[10]何刚. 硫磷硅共存对甲醇催化剂失活的影响[J]. 石油与天然气化工,2003,32(1):4-6.
[11]何刚. 硫对甲醇催化剂C207失活影响的研究[J]. 石油与天然气化工,2002,31(4):173-177.
[12]何刚,高勤卫,严川伟. 硫铁镍共存对工业用甲醇催化剂活性影响的研究[J]. 石油与天然气化工,2008,37(6):469-498.
[13]Golden T C. Removal of trace iron and nickel carbonyls by adsorption[J]. Ind Eng Chem Res,1991,30(3):502-507.
[14]余金华,祁国安,薛守标. 影响甲醇合成催化剂寿命的主要因素及对策[J]. 化学工业与工程技术,1999,20(3):24-27.
[15]Mortyn V Twigg. Catalyst Hand Book[M]. New York: Baker & Taylor Books, 1989.
[16]郭新法,唐海亮. C207 型甲醇催化剂使用过程中的优化措施[J]. 煤化工,2008(3):17-20.
[17]丰中田,裴学国,唐海涛. 甲醇合成催化剂失活原因分析及延长使用寿命的方法[J]. 煤化工,2007(4):41-43.
[18]王兆谦,潘伟雄,李晋鲁. 一种活性高、热稳定性好的甲醇合成催化剂[J]. 天然气化工:化学与化工,2004,29(2):16-19.
[19]王莉. 合成甲醇催化剂的研究进展[J]. 化肥设计,2007,45(3):55-57.

基金

收稿日期:2009-02-17修回日期:2009-05-07基金项目:国家自然科学基金资助项目(50573032);南京信息工程大学基金资助项目(20080314)作者简介:何刚(1962—),副教授,研究方向为催化技术、环保材料和腐蚀与防护技术。Email: hegang@jlonline.com。引文格式:何刚,高勤卫. 铜系甲醇催化剂受热后的结构变化[J]. 南京林业大学学报:自然科学版,2009,33(6):99-102.

Accesses

Citation

Detail

段落导航
相关文章

/