[1]Jenkinson D S, Ladd J N. Microbial biomass in soil: measurement and turnover[J]. Soil Biology and Biochemistry, 1981, 5: 415-471. [2]李世清,凌莉,李生秀. 影响土壤中微生物体氮的因子[J]. 土壤与环境,2000,9(2):158-162. [3]周建斌,陈竹君,李生秀. 土壤微生物量氮含量、矿化特性及其供氮作用[J]. 生态学报,2001,21(10):1718-1725. [4]王淑平,周广胜. 土壤微生物量氮的动态及其生物有效性研究[J]. 植物营养与肥料学报,2003,9(1):87-90. [5]庞欣,张福锁,王敬国. 不同供氮水平对根际MB-N及微生物活度的影响[J]. 植物营养与肥料学报,2000,6(4):476-480. [6]凌莉,闫湘,关中地区农田生态系统土壤微生物体氮分异性研究[J]. 干旱地区农业研究,2000,18(3):32-36. [7]谭周进,汤海涛,余崇祥. 秸秆还田栽培晚稻土壤微生物动态研究[J]. 湖南农业科技,2001(4):30-33. [8]田育军. 林杉长期不同施肥土壤微生物态氮作为土壤供氮指标的研究[J]. 甘肃农业大学学报,2000,35(1):24-28. [9]沈其荣,王岩,史瑞和. 土壤微生物量和土壤固定态铵的变化及水稻对残留N的利用[J]. 土壤学报,2000,37(3):330-338. [10]唐玉霞,贾树龙,孟春香. 土壤微生物生物量氮研究综述[J]. 中国生态农业学报,2002,10(2):76-78. [11]龚伟,胡庭兴,宫渊波,等. 土壤微生物量P研究综述[J]. 四川林勘设计,2005(2):60-63. [12]Barbhuiya A R, Arunachalam A, Pandey H N, et al. Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet evergreen forest[J]. European Journal of Soil Biology, 2004, 40: 113-121. [13]Devi N B, Yadava P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixedoak forest ecosystem of Manipur, Northeast India[J]. Applied Soil Ecology, 2006, 31: 220-227. [14]Esther Enowashu, Christian Poll, Norbert Lamersdorf. Microbial biomass and enzyme activities under reduced nitrogen deposition in a spruce forest soil [J]. Applied Soil Ecology, 2009, 43: 11-21. [15]周建斌,李生秀,陈竹君,等. 利用 15NO-3标记法研究土壤微生物量氮的化学及生物有效性[J]. 土壤学报,2003,40(6):888-893. [16]姚槐应,何振立,黄昌勇. 提高氮肥利用效率的微生物量机制探讨[J]. 农业环境保护,1999,18(2):54-56,75 [17]宋建国,林杉,吴文良,等. 土壤易矿化有机态氮和微生物态氮作为土壤氮素生物有效性指标的评价[J]. 生态学报,2001,21(2):290-294. [18]王国兵,郝岩松,阮宏华. 土地利用方式的改变对土壤呼吸及土壤微生物生物量的影响[J]. 北京林业大学学报,2006,28(Supp.2):73-79. [19]Brookes P C, Aader L, Pruden G, et al. Chloroform fumigation and there lease of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen[J]. Soil Biology and Biochemistry, 1985, 17: 837-842. [20]Brookes P C, Kragt J F, Powlson D S, et al. Chloroform fumigation and there lease of soil nitrogen: The effects of fumigation time and temperature[J]. Soil Biology and Biochemistry, 1985, 17: 831-835. [21]何振立. 土壤微生物量及其在养分循环和环境质量评价中的意义[J]. 土壤,1997(2):61-69. [22]Jenkinson D S. The determination of microbial biomass carbon and nitrogen in soil[C]//Wilson J R. Advances in Nitrogen Cycling in Agricultural Ecosystem. Brishane: International Symposium, 1987. [23]王国兵,阮宏华,唐燕飞,等. 森林土壤微生物生物量动态变化研究进展[J]. 安徽农业大学学报,2009,36(1):100-104. [24]Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil [J]. Biological Reviews, 1992, 67: 321-358. [25]陈国潮,何振立,姚槐应. 红壤微生物量的季节性变化研究[J]. 浙江大学学报,1999,25(4):387-388. [26]李世清,任杰,李生秀. 土壤微生物体氮的季节性变化及其与土壤水分和温度的关系[J]. 植物营养与肥料学报,2004,10(1):18-23. [27]Garcia F O, Rice C W. Microbial biomass dynamics in tall grass prairie [J]. Soil Science Society of America Journal, 1994, 58: 816-824. [28]Singh T S, Raghubansh A S, Singh R S, et al. Microbial biomass acts as a source of plant nutrient in dry tropical forest and savanna[J]. Nature, 1989, 338: 499-500. [29]Van G M, Ladd J N, Amato M. Microbial biomass responses to seasonal change and imposed drying regimes at increasing depths of undisturbed topsoil profiles[J]. Soil Biology and Biochemistry, 1992, 24: 103-111. [30]郭剑芬,杨玉盛,陈光水,等. 森林凋落物分解研究进展[J]. 林业科学,2006,42(4):93-100. [31]郭忠玲,郑金萍,马元丹,等. 长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究[J]. 生态学报,2006,26(4):1037-1046. [32]刘建军,余仲东,李华.油松与锐齿栎林土壤微生物生物量初步研究[J]. 陕西林业科技,2001(2):7-10. [33]杨刚,何寻阳,王克林,等. 不同植被类型对土壤微生物量碳氮及土壤呼吸的影响[J]. 土壤通报,2008,39(1):189-191. [34]陈小燕,吕家珑,张红,等. 子午岭不同植被类型土壤微生物量与有机酸含量[J]. 干旱地区农业研究,2008,26 (3):167-170. [35]赵先丽,周广胜,吕国红. 辽河三角洲不同植被类型土壤微生物特征研究[J]. 土壤通报,2009,40(6):1266-1269. [36]周焱,徐宪根,王丰,等. 武夷山不同海拔梯度土壤微生物生物量、微生物呼吸及其商值(qMB,qCO2)[J]. 生态学杂志,2009,28(2):265-269. [37]Kaiser K A, Martens R, Heinemeyer O. Temporal changes in soil microbial biomass carbon in an arable soil. Consequence for soil sampling[J]. Plant and Soil, 1995, 170: 287-295. [38]刘满强,胡锋,何园球,等. 退化红壤不同植被恢复下土壤微生物量季节动态及其指示意义[J]. 土壤学报,2003,40(6):937-944. |