[1] Cho A, Normile D. Nobel prize in chemistry:Mastering macromolecules [J]. Science, 2002(298): 527-528. [2]Bachi A, Bonaldi T. Quantitative proteomics as a new piece of the systems biology puzzle [J]. Journal of Proteomics, 2008, 71(3): 357-367. [3]Beretta L. Proteomics from the clinical perspective: many hopes and much debate [J]. Nature Methods, 2007(4): 785-786. [4]Nilsson T, Mann M, Aebersold R, et al. Mass spectrometry in highthroughput proteomics: ready for the big time [J]. Nature Methods, 2010(7): 681-685. [5]Cox J, Mann M. Is proteomics the new genomics? [J]. Cell, 2007, 130(3): 395-398. [6]Yan W, Chen S S. Mass spectrometrybased quantitative proteomic profiling [J]. Briefings in Functional Genomics & Proteomics, 2005, 4(1): 27-38. [7] Zhu W, Smith J W, Huang C M. Mass spectrometrybased labelfree quantitative proteomics [J/OL]. Journal of Biomedicine and Biotechnology, 2010 [2009-11-20].http:∥www.hindawi:com/journeds/jbb/2010/840518.html. [8] Ong S E, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics [J]. Molecular & Cellular Proteomics, 2002(1): 376-386. [9]张鹏飞. 基于生物质谱的定量蛋白质组学分析策略 [J]. 国外医学:生理、病理科学与临床分册, 2004, 24(4):389-392. [10]Aggarwal K, Choe L H, Lee K H. Shotgun proteomics using the iTRAQ isobaric tags [J]. Briefings in Functional Genomics and Proteomics, 2006, 5(2): 112-120. [11]孙瑞祥,付岩,李德泉,等. 基于质谱技术的计算蛋白质组学研究 [J]. 中国科学:E辑 信息科学, 2006, 36(2): 222-234. [12]Li X J, Yi E C, Kemp C J, et al. A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatographymass spectrometry [J]. Molecular & Cellular Proteomics, 2005(4): 1328-1340. [13] Griffin N M, Yu J, Long F, et al. Labelfree, normalized quantification of complex mass spectrometry data for proteomic analysis [J]. Nature Biotechnology, 2010, 28: 83-89. [14]Witze E S, Old W M, Resing K A, et al. Mapping protein posttranslational modifications with mass spectrometry [J]. Nature Methods, 2007,4(10): 798-806. [15]Zolnierowicz S, Bollen M. Protein phosphorylation and protein phosphatases De Panne, Belgium, September 19—24, 1999 [J]. The EMBO Journal, 2000, 19: 483-488. [16] Amankwa L N, Harder K, Jirik F, et al. Highsensitivity determination of tyrosinephosphorylated peptides by online enzyme reactor and electrospray ionization mass spectrometry [J]. Protein Science, 1995(4): 113-125. [17]Kalume D E, Molina H, Pandey A. Tackling the phosphoproteome: tools and strategies [J]. Current Opinion in Chemical Biology, 2003,7(1): 64-69. [18]Ficarro S B, McCleland M L, Stukenberg P T, et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae [J]. Nature Biotechnology, 2002, 20(3): 301-305. [19]Garcia B A, Shabanowitz J, and Hunt D F. Characterization of histones and their posttranslational modifications by mass spectrometry [J]. Current Opinion in Chemical Biology, 2007, 11(1): 66-73. [20]Kim S C, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey [J]. Molecular Cell, 2006, 23(4): 607-618. [21]谭锋维, 陆丽芳, 王晖, 等. 泛素及其类似物的蛋白质组学研究进展 [J]. 基础医学与临床, 2007, 27(1): 8-15. [22]Peng J, Schwart D, Elias J E, et al. A proteomics approach to understanding protein ubiquitination [J]. Nature Biotechnology, 2003, 21(8): 921-926. [23]Denison C, Kirkpatrick D S, Gygi S P. Proteomic insights into ubiquitin and ubiquitinlike proteins [J]. Current Opinion in Chemical Biology, 2005, 9(1): 69-75. [24] Doerr A. Targeted proteomics [J]. Nature Methods, 2010,7: 34. [25]Deutsch E W, Lam H, Aebersold R. Peptide Atlas: a resource for target selection for emerging targeted proteomics workflows [J]. EMBO Reports, 2008(9): 429-434. [26] Picotti P, Bodenmiller B, Mueller L N, et al. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics [J]. Cell, 2009, 138(4): 795-806. [27]Mitchell P. Proteomics retrenches [J]. Nature Biotechnology, 2010, 28: 665-670. [28] Picotti P, Rinner O, Stallmach R, et al. Highthroughput generation of selected reactionmonitoring assays for proteins and proteomes [J]. Nature Methods, 2009,7: 43-46. [29]Zhang H, Yan W, Aebersold R. Chemical probes and tandem mass spectrometry: a strategy for the quantitative analysis of proteomes and subproteomes [J]. Current Opinion in Chemical Biology, 2004, 8(1): 66-75. [30]Mann M, Jensen O N. Proteomic analysis of posttranslational modifications. [J]. Nature Biotechnology, 2003, 21(3): 255-261. [31]Kcher T, SupertiFurga G. Mass spectrometrybased functional proteomics: from molecular machines to protein networks[J]. Nature Methods, 2007, 4: 807-815. [32]Gavin A C, Bsche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes [J]. Nature, 2002, 415: 141-147. [33]Ho Y, Gruhler A, Heilbut A, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry [J]. Nature, 2002, 415: 180-183. [34]Nesvizhskii A I, Vitek O, Aebersold R. Analysis and validation of proteomic data generated by tandem mass spectrometry [J]. Nature Methods, 2007, 4(10): 787-797. [35]Mann M, Wilm M. Errortolerant identification of peptides in sequence databases by peptide sequence tags [J]. Analytical Chemistry, 1994, 66: 4390-4399. [36]Frank A, Tanner S, Bafna V, et al. Peptide sequence tags for fast database search in massspectrometry[J]. Journal of proteome Research, 2005, 4(4): 1287-1295. [37]Tabb D L, Saraf A, Yates J R. GutenTag: highthroughput sequence tagging via an empirically derived fragmentation model [J]. Analytical Chemistry, 2003(75): 6415-6421. [38]Liu C, Yan B, Song Y, et al. Peptide sequence tagbased blind identification of posttranslational modifications with point process model [J]. Bioinformatics, 2006, 22(14):307-313. |