Adsorption of organophosphorus pesticides on bentonite and humus by Chromatography
ZHU Lijun1, ZHANG Wei*
Author information+
1. College of Science, Nanjing Forestry University, Nanjing 210037, China; 2. College of Forest Resources and Environment, Nanjing Forestry University, Nanjing 210037, China
Bentonite and humus are very important parts in soil. They can adsorb pesticides intensively because of their complicated structure and many functional groups. Chlorpyrifos and triazophos were quantitatively analyzed by internal standard method using AE. SE-54 capillary column and ntetradecane as the internal standard substance. The adsorption of chlorpyrifos and triazophos on bentonite and humus was studied by using the equilibrium oscillometry. The results showed that standard deviations were between 015 and 061; coefficients of variation were between 098 % and 151 %; the recoveries of chlorpyrifos and triazophos were between 8933 %—124 % and 97 %—116 % respectively; the detect limits were 114×10-11 g/g and 139×10-11 g/g,respectively. Humus had great adsorption capacity than bentonite. The adsorption of chlorpyrifos and triazophos fitted well with the Langmuir equation on bentonite. On the other hand, it fitted well with both Freundlich equation and Langmuir equation on humus.
ZHU Lijun, ZHANG Wei*.
Adsorption of organophosphorus pesticides on bentonite and humus by Chromatography[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2011, 35(05): 143-146 https://doi.org/10.3969/j.jssn.1000-2006.2011.05.032
中图分类号:
S714
S153
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]单正军.农用化学品环境安全评价与监控[M].北京:中国环境科学出版社,2008. [2]余向阳,赵于丁,王冬兰,等.毒死蜱和三唑磷对斑马鱼头部AChE活性影响及在鱼体内的富集[J].农业环境科学学报,2008,27(6):2452-2455. [3]Timchalk C, Poet T S, Kousba A A. Age-dependent pharmacokinetic and pharmacodynamic response in preweanling rats following oral exposure to the organophosphorus insecticide chlorpyrifos[J]. Toxicology, 2006, 220(1):13-25. [4]Murray R T, Stein C V. Stability of chlorpyrifos for termiticidal control in six Australian soils[J]. Joural Agricultural Food Chemistry, 2001, 49(6): 2844-2847. [5]汪立刚,蒋新,颜冬云,等.土壤中残留毒死蜱的作物效应[J].环境科学,2006,27(2):366-370. [6]Canty M N, Hagger J A, Moore R T B, et al. Sublethal impact of short term exposure to the organopgosphate pesticide azamethiphos in the marine mollusc mytilus edulis[J]. Marine Pollution Bulletin, 2007, 54(4): 396-402. [7]梁俊,赵政阳,李海飞,等.苹果中毒死蜱残留降解动态研究[J].农业环境科学学报,2008,27(6):2461-2466. [8]龚道新,郑丽英,杨仁斌,等.水土和柑桔中三唑磷残留量的气相色谱分析方法研究[J].农业环境科学学报,2004,23(5):1034-1036. [9]吴声敢,王强,赵学平,等.毒死蜱和甲氰菊酯对家蚕毒性与安全评价研究[J].农药科学与管理,2003,24(9):11-14. [10]郭华,朱红梅,杨红.除草剂草萘胺在土壤中的降解与吸附行为[J].环境科学,2008,29(6):1729-1736. [11]赵华,徐浩,叶兴祥.甲胺磷和三唑磷在稻田中的降解迁移及吸附研究[J].农业环境科学学报,2005,24(2):284-288. [12]谢慧,朱鲁生,王军,等.真菌WZ-Ⅰ对有机磷杀虫剂毒死蜱的酶促降解[J].环境科学,2005,26(6):164-168. [13]凌云,王菡,雍炜,等.气相色谱-质谱/质谱法检测蔬菜中的毒死蜱及其代谢物[J].色谱,2009,27(1):78-81. [14]王爱芬,李小鹰.40.7 %毒死蜱乳油中有效成分毒死蜱的气相色谱分析[J].农药,2001,40(7):25. [15]伍翔,魏晓林,魏方林,等.30%三唑磷微乳剂的气相色谱法分析[J].现代农药,2005,4(5):18-19. [16]王志波,康文斌,黄琼辉.气相色谱法测定40%毒死蜱乳油中有效成分含量的不确定度评估[J].农药科学与管理,2006,25(10):1-5. [17]李少霞,黄伟雄,陈明,等.水中毒死蜱的气相色谱测定法[J].环境与健康杂志,2006,23(5):458-459. [18]朱丽珺,张金池,宰德欣,等.腐殖质对Cu2+和Pb2+的吸附特性[J].南京林业大学学报:自然科学版,2007,31(4):73-76. [19]朱丽珺.不同林分类型土壤及主要组分对重金属的吸附特征研究[D].南京:南京林业大学,2007. [20]蔡道基,杨佩芝,龚瑞忠,等.化学农药环境安全性评价实验准则[S].北京:国家环境保护局,1989. [21]朱丽珺,张维,张金池,等.毒死蜱和三唑磷在膨润土和腐殖质上的热力学吸附及影响因素[J].环境科学,2010,31(11):2699-2704. [22]陈飞霞,魏沙平,魏世强.毒死蜱在不同土壤腐殖酸上的吸附/解吸特征[J].环境污染与防治,2006,28(11):818-821. [23]许端平,陈洪,曹云者,等.多环芳烃菲在不同土壤及其组分中的吸附特征研究[J].农业环境科学学报,2005,24(4):625-629. [24]沈培友,徐晓燕,马毅杰.粘土矿物在环境修复中的研究进展[J].中国矿业,2004,13(1):47-50.