南京林业大学学报(自然科学版) ›› 2012, Vol. 36 ›› Issue (03): 137-143.doi: 10.3969/j.jssn.1000-2006.2012.03.028
杨琳璐,王中生*,周灵燕, 马元屾, 王志科, 营 婷, 宋圆圆, 徐卫祥
出版日期:
2012-05-30
发布日期:
2012-05-30
基金资助:
YANG Linlu, WANG Zhongsheng*, ZHOU Lingyan, MA Yuansheng, WANG Zhike, YING Ting, SONG Yuanyuan, XU Weixiang
Online:
2012-05-30
Published:
2012-05-30
摘要: 隐花植物苔藓和地衣具有各类生境分布的广泛性、小范围内个体/种群/群落分布的稳定性、独特的生理特性及其对环境变化的生物敏感性,在环境变化响应与指示研究中已成为重要工具种。目前对隐花植物的监测指标包括:(1)物种生物量、种类组成及丰度指数等;(2)植株体内某元素积累量与环境含量间的相关性;(3)环境变化引起细胞代谢速率、光合速率、光合色素含量、各种酶含量及活性等的改变;(4)整合环境因子与监测种的生理生态指标间的相关性,构建监测模型。但不同物种对环境变化的响应存在差异性,选择合适的生物监测工具种及相应的监测指标,构建合理的“污染物类型-监测工具种-监测指标”的监测体系,将有利于进一步提升生物监测的可行性及可信度。
中图分类号:
杨琳璐,王中生,周灵燕,等. 苔藓和地衣对环境变化的响应和指示作用[J]. 南京林业大学学报(自然科学版), 2012, 36(03): 137-143.
YANG Linlu, WANG Zhongsheng, ZHOU Lingyan, MA Yuansheng, WANG Zhike, YING Ting, SONG Yuanyuan, XU Weixiang. Response and bioindicator of bryophyte and lichen as cryptogamae plants to environmental change[J].Journal of Nanjing Forestry University (Natural Science Edition), 2012, 36(03): 137-143.DOI: 10.3969/j.jssn.1000-2006.2012.03.028.
[1] Nancy B, Grimm, Stanley H Faeth, et al. Global change and the ecology of cities[J]. Science, 2008, 319:756. [2] Tilmes S. Quantitative estimation of surface ozone observation and forecast errors[J]. Phys Chem Earth, 2001, 26(10):759-762. [3] Batizas F A, Siontorou C G. A knowledge-based approach to environmental biomonitoring[J]. Environ Monit Assess, 2006, 126:123-134. [4] Bates J W. Mineral nutrition, substratum ecology, and pollution.[C]//Shaw A J, Goffinet. Bryophyte Biology. Cambridge:Cambridge University Press, 2000. [5] 吴鹏程.苔藓植物生物学[M].北京:科学出版社,1998. [6] Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70:153-226 [7] Stulen I, Perez-soba M. Impact of gaseous nitrogen deposition on plant functioning[J]. New Phytol, 1998, 139:61-70. [8] Zechmeister H G, Grodzinska K, Szarek-Lukaszewska G. Bryophytes[C]// Markert B A, Breure A M, Zechmeister H G. Bioindicators. Amsterdam: Elsevier, 2003. [9] Koranda M, Kerschbaum S. Physiological responses of bryophytes Thuidium splendens to increased nitrogen deposition[J]. Annals of Botany, 2007, 99:161-169. [10] Pearce I S K, Woodin S J, van der Wal R. Physiological and growth responses of the montane bryophyte Racomitrium lanuginosum to atmospheric nitrogen deposition[J]. New Phytologist, 2003, 160:145-155. [11] Mara Arr niz-Crespo, Jonathan R Leake. Bryophyte physiological responses to, and recovery from, long-term nitrogen deposition and phosphorus fertilization in acidic grassland[J]. New Phytologist, 2008,180:864-874. [12] 刘滨扬,刘蔚秋,雷纯义,等.三种苔藓植物对模拟N沉降的生理响应[J].植物生态学报,2009,33(1):141-149. [13] Pitcairn C, Fowler D, Leith I, et al. Bioindicators of enhanced nitrogen deposition[J]. Environmental Pollution, 2003, 126:353-361. [14] Sloga A, Burkhardt J, Zechneister H G, et al. Nitrogen content, 15N natural abundance and biomass of the two pleurocarpous mosses Pleurozium schreberi(brid).2005 In relation to atmospheric nitrogen deposition[J]. Enviromental Pollution, 2005, 134:465-473. [15] 刘学炎,肖化云,刘丛强,等.石生苔藓氮含量和氮同位素指示贵阳地区大气氮沉降的空间变化和来源[J].环境科学,2008,29(7):1785-1790. [16] Paulissen M P C P, Besalu L E, De Bruijn H, et al. Contrasting effects of ammonium enrichment on fen bryophytes[J]. Journal of Bryology, 2005, 27:109-117. [17] Wolseley P A, James P W, Theobald M R, et al. Detecting changes in epiphytic lichen communities at sites affected by atmospheric ammonia from agricultural sources[J]. Lichenologist, 2006, 38:161-176. [18] Wolseley Pat A, Larsen Vilsholm Ren. Biomonitoring with lichens on twigs[J]. The Lichenologist, 2009, 41(2):189-202. [19] Wilson W D, Stock. Historical nitrogen content of bryophyte tissue as an indicator of increased nitrogen deposition in the cape metropolitan area, south Africa[J]. Enviornmental Pollution, 2009, 157: 938-945. [20] NOAA. Untied States temperature and precipitation trends[R/OL]. National Oceanic and Atmospheric Administration Climate Prediction Center. 2005. [2011-08-07].http://www.cpc.ncep.noaa.gov/charts.shtml. [21] Jauhianinen J, Silvola J. Photosynthesis of Sphagnum fuscum at long-term raised CO2 concentrations[J]. Ann Bot Fenn, 1999, 36(1):11-19. [22] Van der Heijden E, Janhiainen J, Vasander H, et al. Effects of raised atmospheric CO2 and increased nitrogen deposition on growth and chemical composition of two Sphagnum species[J]. Journal of Bryology, 2000, 22(3):175-182. [23] Heijmans M M P D, Berendse F, Arp W J, et al. Effects of elevated carbon dioxide and increased nitrogen deposition on bog vegetation in the Netherlands[J]. Journal of Ecology, 2001, 89: 268-279. [24] Mitchell E A D, Butler A. Contrasted effects of increased N and CO2 supply on two keystone species in peatland restoration and implications for global change[J]. Journal of Ecology, 2002, 90: 529-533. [25] Gignac L Dennis, Barbara J Nicholson, Suzanne E Bayley. The utilization of bryophytes in bioclimatic modeling: predicted northward migration of peatlands in the Mackenzie River basin, Cananda, as a result of global warming[J]. The Bryologist, 1998, 101:572-587. [26] Van Herk C M, Aptroot A, Van Dobben H F. Long-term monitoring in the Netherlands suggests that lichens respond to global warming[J]. Lichenologist, 2002, 34:141-154. [27] Quested H M, Cornelissen J H C, Press M C, et al. Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites[J]. Ecology, 2003, 84:3209-3221. [28] Simone l Lang. An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species[J]. Journal of Ecology, 2009, 97:886-900. [29] Weltzin J F, Harth C, Scott D Bridgham, et al. Production and microtopography of bog bryophytes: response to warming and water-table manipulations[J]. Oecologia, 2001, 128(4):557-565. [30] Richardson D H S, Nieboer E. Ecophysiological responses of lichens to sulfur dioxide[J]. J Hattori Bot Lab, 1983, 54:331-351. [31] Nash T H, Gries C. Lichens as bioindactors of sulfur dioxide[J]. Symbiosis, 2002, 33:1-21. [32] Kashulina G, Reimann C. Sulphur in the arctic environment(2): results of multi-medium regional mapping[J]. Environmental Pollution, 2002, 116:337-350. [33] Stapper N J, Kricke R. Epiphytische moose und flechten als Bioindikatoren von st dtischer berw mung, Standortseutrophierung und verkehrsbedingten Immissionen[J]. Limprichtia, 2004, 24:187-208. [34] Stephenson S L, Studlar S M, Mcquattie C J. Plant and environment interaction: Effects of acidification on bryophyte communities in West Virgina: Mountain steams[J]. Journal of Environmental Quality, 1995, 24(1):116-125. [35] 陈威,何丙辉.重庆马尾松林下苔藓植物对酸雨的指示意义初步研究[D].重庆:西南大学,2008. [36] Richardson D H S. Pollution Monitoring with Lichens[M]. U K:Richmond Slough, 1992. [37] Crist R H, Martin J R, Chenko J, et al. Uptake of metals on peat moss: An ion-exchange process[J]. Environ Sci Tech, 1996, 30:24-56. [38] Marz Dazy, Jean-Fran ois Masfaraud, Jean-Fan ois Férard. Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw[J]. Chemosphere, 2009, 75:297-302. [39] 张光飞,段仲昭,罗晓娟,等.2种苔藓的叶绿素荧光特性及耐受性对Pb2+浓度的响应[J].环境污染与防治,2011,33(1):36-40. [40] Markert B, Herpinb U. A comparison of heavy metal deposition in select Eastern countries using the moss monitoring method, with special emphasis on the ‘Black Triangle’[J]. Sci Total Environ, 1996, 193:85-100. [41] Michal hejcman, Ji ina Száková. The rengen grassland experiment,bryophytes biomass and element concentrations after 65 years of fertilizer application[J]. Environ Monit Assess, 2009, 166:653-652. [42] ke Rühling. A European survey of atmospheric heavy metal deposition in 2000-2001[J]. Environmental Pollution, 2002, 120:23-25. [43] Majumadar S, Ram S S, Jana N K, et al. Accumulation of minor and trace elements in lichens in and around Kolkata, India: an application of X-ray fluorescence technique to air pollution monitoring[J]. X-ray Spectrometry, 2009,38(6):469-473. [44] Maurizio Guidotti, Daniela Stella. Monitoring of traffic-related pollution in a province of central Italy with transplanted lichen Pseudovernia furfuracea[J]. Bull Environ Contam Toxicol, 2009, 83:852-858. [45] W H O. Dioxins and their effects on human health[J/OL]. Word Health Organization, 2007(225). [2011-08-20]. http://www.who.int/inf-fs/en/fact225.html. [46] Augusto Sofia, Cristina M Guas, Cristina Branquinho. Understanding the performance of different lichen species as biomonitors of atmospheric dioxins and furans: potential for intercalibration[J]. Ecotoxicology, 2009, 18:1036-1042. [47] Samecka-Cymerman, Kolon A, Kempers K. A comparison of native and transplanted Fontinalis antipyretica Hedw. as biomonitors of water polluted with heavy metals[J]. Sci Total Environ, 2005, 341:97-107. [48] Hongve D, Brittain J E. Aquatic mosses as a monitoring tool for 137/Cs contaminating in streams and rivers-a field study from central southern Norway[J]. Journal of Environmental Radioactivity, 2002, 60:139-147. [49] Van der Poorten V, Palm R. Compared regression methods for inferring ammonium nitrogen concentrations in running freshwaters from aquatic bryophyte assemblages[J]. Hydrobiologia, 2001, 452:181-190. [50] Lücking R, Bernecker-Lücking A. Dirp-tips do not impair the development of epiphyllous rain-forest lichen communities[J]. Journal of Tropical Ecology, 2005, 21:171-177. [51] 周灵燕,王中生,陈姝凝,等.叶附生生物生态学研究进展[J].植物生态学报,2009,33(5):993-1002. [52] Wanck W, Portl K. Phyllosphere nitrogen relations: reciprocal transfer of nitrogen between epiphyllous liverworts and host plants in the understory of a lowland tropical wet forest in Costa Rica[J]. New Phytologist, 2005, 166: 577-588. [53] Li Xinrong. Influence of variation of soil spatial heterogeneity on vegetation restoration[J]. Science in China: Earth Sciences, 2005, 48:2020-2031. |
[1] | 丛明珠, 刘琪璟, 孙震, 董淳超, 钱尼澎. 长白山北坡植物群落β多样性及其组分驱动因素分析[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 99-106. |
[2] | 曹荔荔, 阮宏华, 李媛媛, 倪娟平, 王国兵, 曹国华, 沈彩芹, 徐亚明. 不同林龄水杉人工林地表大型土壤动物群落特征比较研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 91-98. |
[3] | 张怡婷, 夏念和, 林树燕, 丁雨龙. 我国寒竹属空间分布特征及影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 107-114. |
[4] | 胡衍平, 刘卫东, 张珉, 陈明皋, 程勇, 魏志恒, 庞文胜, 吴际友. 山乌桕家系叶片叶色参数和色素含量及其解剖结构研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 123-133. |
[5] | 王一洁, 王璐冕, 丁真慧, 钱程, 曹加杰. 城市滨水绿地空间夏季微气候效应研究[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 233-241. |
[6] | 赵国扬, 洪波, 高俊平, 赵鑫, 黄洪峰, 徐彦杰. 菊属新品种‘雀欢’[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 254-255. |
[7] | 任佳辉, 高捍东, 陈哲楠, 李浩, 刘强, 陈澎军. 杂交新美柳苗对盐涝胁迫的生长和生理响应[J]. 南京林业大学学报(自然科学版), 2025, 49(2): 57-66. |
[8] | 董亚文, 陈双林, 谢燕燕, 郭子武, 张景润, 汪舍平, 徐勇敢. 林下植被演替过程中毛竹和主要优势树种叶片建成成本变化特征[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 179-186. |
[9] | 徐薪璐, 孔淑鑫, 吕卓, 江帅君, 赵婉琪, 林树燕. 靓竹叶色表型叶片形态、结构与光合特性相关性研究[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 145-154. |
[10] | 曹永慧, 陈庆标, 周本智, 葛晓改, 王小明. 不同截雨干旱时间对毛竹叶片氮含量时空分布的影响[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 155-161. |
[11] | 隋夕然, 李军, 陈娟, 华军, 沈谦, 杨洪胜, 何前程, 李由, 王伟, 彭冶, 葛之葳, 张增信. 徐州市侧柏人工林群落不同演替阶段物种多样性变化[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 171-178. |
[12] | 尹华康, 张晋东, 黄金燕, 蒲冠桦, 毛泽恩, 周材权, 黄耀华, 付励强. 四川马边大风顶自然保护区大熊猫主食竹空间分布特征[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 187-193. |
[13] | 孔凡斌, 金晨涛, 徐彩瑶. 罗霄山地区生态系统服务与居民福祉耦合协调关系变化及其影响因素[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 245-254. |
[14] | 龚霞, 吴银明, 王海峰, 曾攀, 唐亚, 温铿, 焦文献. 花椒新品种‘蜀椒1号’[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 265-266. |
[15] | 吴桐, 王贤荣, 伊贤贵, 周华近, 陈洁, 李蒙, 陈祥珍, 高书成. 樱花新品种‘胭脂雪’[J]. 南京林业大学学报(自然科学版), 2025, 49(1): 267-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||