[1] Gill S J, Biging G S. Autoregressive moving average models of crown profiles for two California hardwood species[J]. Ecological Modelling, 2002, 152(2-3): 213-226. [2] Biging G S, Wensel L G. Estimation of crown form for six conifer species of northern California[J]. Can J Forest Research, 1990, 20(8): 1137-1142. [2] Mohren G M J, Gerwen C P V, Spitters C J T. Simulation of primary production in Even-aged stands of Douglas-fir[J]. Forest Ecoogy and Management, 1984, 9(11): 27-49. [4] Maguire D A, Moeur M, Bennett W S. Models for describing basal diameter and vertical distribution of primary branches in young Douglas-fir[J]. Forest Ecology and Management, 1994, 63(11): 23-55. [5] Honda H. Description of the form of trees by the parameters of the tree like body: effects of the branching angle and the branch length in the shape of the tree like body[J]. Journal of Theoretical Biology, 1971, 31(2): 331-338. [6] Gavrikov V L, Karlin I V. A dynamic model of tree terminal growth[J]. Canadian Journal of Forest Research, 1993, 23(2): 326-329. [7] Ford E D, Avery A, Ford R. Simulation of branch growth in the Pinaceae: interactions of morphology, phenology, foliage productivity, and the requirement for structural support, on the export of carbon[J]. Journal of Theoretical Biology, 1990, 146(11): 15-36. [8] Corona P. Studying tree crown architecture by fractal analysis[J]. Italia Forestale Ecology of Montana, 1991, 46(4): 291-307. [9] Zeide B, Gresham C A. Fractal dimensions of tree crowns in three loblolly pine plantations of coastal South Carolina[J]. Canadian Journal of Forest Research, 1991, 21(8): 1208-1212. [10] Zeide B, Pfeifer P. A model for estimation of fractal dimension of tree crowns[J]. Forest Science, 1991, 37(5): 1253-1265. [11] Zeide B. Fractal analysis of foliage distribution in loblolly pine crowns[J]. Canadian Journal of Forest Research, 1998, 28(1): 106-114. [12] Nepal S K, Somers G L, Caudill S B. A stochastic frontier model for fitting tree crown shape in Loblolly pine(Pinus taeda L.)[J]. Journal of Agricultural, Biological and Environmental Statistics, 1996, 1(3): 336-353. [13] Doruska P F, Mays J E. Crown profile modeling of loblolly pine by nonparametric regression analysis[J]. Forest Science, 1998, 44(3): 445-453. [14] Cluzeau C, Le Goff N, Ottorini J M. Development of primary branches and crown profile of Fraxinus escrlvior[J]. Canadian Journal of Forest Researchearch, 1994, 24(12): 2315-2323. [15] Christine Deleuze,Jean-Christophe Hervé,Francis Colin, et al. Modelling crown shape of Picea abies: spacing effects[J]. Canadian Journal of Forest Research, 1996, 26(11): 1957-1966. [16] Randy L, Roeh Douglas A, Maguire. Crown profile models based on branch attributes in coastal Douglas-fir[J]. Forest Ecology and Management, 1997, 96(1-2): 77-100. [17] Mitchell K J. Dynamics and simulated yield of Douglas-fir[J]. Forest Science Monograph, 1975, 17(4):37. [18] Fengri L. Modeling crown profile of Larix olgensis trees[J]. Scientia Silvae Sinicae, 2004, 40(5):16-24. [19] Raulier F, Ung C H, Ouellet D. Influence of social status on crown geometry and volume increment in regular and irregular black spruce stands[J]. Canadian Journal of Forest Research, 1996, 26(10): 1742-1753. [20] Ritchie M W, Hann D W. Equations for predicting basal area increment in Douglas-fir and grand fir[J]. Forest Research Laboratory, Oregon State University, Corvallis, OR, Research Bulletin, 1985, 51(10): 9. [21] Felipe Crecente Campo, Peter Marshall, Valerie Lemay, et al. A crown profile model for Pinus radiata in northwestern Spain[J]. Forest Ecology and Menagement, 2009, 257:2370-2379. |