南京林业大学学报(自然科学版) ›› 2012, Vol. 36 ›› Issue (04): 133-139.doi: 10.3969/j.jssn.1000-2006.2012.04.028
李 静1,2,张冰玉3,苏晓华3*,沈应柏1,2*
出版日期:
2012-07-07
发布日期:
2012-07-07
基金资助:
LI Jing1,2, ZHANG Bingyu3, SU Xiaohua3*, SHEN Yingbai1,2*
Online:
2012-07-07
Published:
2012-07-07
摘要: 氮素(N)是植物需求量最大的营养元素,其利用率是影响植物生长和发育的主要因素。氮素的供需失衡会导致植物产量降 低,过量施N肥还会造成环境破坏。NH+4和NO-3是可吸收利用的主要氮源。 笔者分析了植物吸收NH+4、NO-3的转运蛋白及其相关基因的表达调控和功 能的研究进展,认为在以后的研究中,应加强林木中与氮吸收相关基因的鉴定和认识,特别是加强氮素信号传导途径、NO -3及NH+4在植物体内的运输和调控机制、各蛋白组分间的相互作用、时间和空间 表达模式和调控模式的研究。
中图分类号:
李静,张冰玉,苏晓华,等. 植物中的铵根及硝酸根转运蛋白研究进展[J]. 南京林业大学学报(自然科学版), 2012, 36(04): 133-139.
LI Jing, ZHANG Bingyu, SU Xiaohua, SHEN Yingbai. Research progress of ammonium and nitrate transporters in plants[J].Journal of Nanjing Forestry University (Natural Science Edition), 2012, 36(04): 133-139.DOI: 10.3969/j.jssn.1000-2006.2012.04.028.
[1] 吴巍,赵军.植物对氮素吸收利用的研究进展[J].中国农学通报,2010,26(13):75-78. [2] 王宇通,邵新庆,黄欣颖,等.植物根系氮吸收过程的研究进展[J].草业科学,2010,27(7): 105-111. [2] 骆媛嫒,柳参奎.植物中铵转运蛋白的研究进展[J].基因组学与应用生物学,2009,28(2): 373-379. [4] 邓若磊,徐海荣,曹云飞,等.植物吸收铵态氮的分子生物学基础[J].植物营养与肥料学报, 2007,13(3):512-519. [5] Miller A J, Fan X R, Shen Q R, et al. Amino acids and nitrate as signals for the regulation of nitrogen acquisition[J]. Journal of Experimental Botany,2008,59(1):111-119. [6] 李少锋,苏晓华,张冰玉.林木基因克隆研究进展[J].植物学报,2011,46(1):79-107. [7] 李新鹏,童依平.植物吸收转运无机氮的生理及分子机制[J].植物学通报,2007,24(6): 714-725. [8] Gazzarrini S, Lejay L, Gojon A,et al.Three functional transporters for constitutive,diurnally regulated,and starvation-induced uptake of ammonium into Arabidopsis roots[J]. The Plant Cell,1999,11 (5):937-948. [9] Loqué D, Wirén N V. Regulatory levels for the transport of ammonium in plant roots [J]. Journal of Experimental Botany,2004, 55(401):1293-1305. [10] Salvemini F, Marini A, Riccio A,et al. Functional characteriz- ation of an ammonium transporter gene from Lotus japonicus[J]. Gene,2001, 270(1-2):237-243. [11] Ludewig U, von Wiren N, Frommer W B. Uniport of NH+4 by the root hair plasma membrane ammonium transporter LeAMT1.1 [J]. Journal of Biological Chemistry, 2002,277:13548-13555. [12] Couturier J, Montanini B, Martin F,et al. The expanded family of ammonium transporters in the perennial poplar plant[J]. New Phytologist,2007,174(1):137- 150. [13] Wang M Y, Siddiqi M Y, Ruth T J, et al. Ammonium uptake by rice roots(II. Kinetics of 13NH+4 influx across the plasmalemma)[J]. Plant Physiology, 1993,103:1259- 1267. [14] Kraiser T, Gras D E, Gutiérrez A G,et al. A holistic view of nitrogen acquisition in plants[J]. Journal of Experimental Botany,2011, 62(4):1455-1466. [15] Pearson J N, Finnemann J, Schjoerring J K. Regulation of the high-affinity ammonium transporter (BnAMT1.2) in the leaves of Brassica napus by nitrogen status[J]. Plant Molecular Biology,2002,49:483- 490. [16] D’Apuzzo E, Rogato A, Simon-Rosin U,et al. Characterization of three functional high-affinity ammonium transporters in Lotus japonicus with differential transcriptional regulation and spatial expression [J]. Plant Physiology,2004, 134:1763-1774. [17] Wiren V N, Gazzarrini S, Gojon A, et al. The molecular physiology of ammonium uptake and retrieval[J]. Current Opinion in Plant Biology,2000,3(3): 254-261. [18] Sonoda Y,Ikeda A,Saiki, et al. Distinct expression and function of three ammonium transporter genes (OsAMT1.1-1.3)in rice[J]. Plant and Cell Physiology,2003, 44(7):726-734. [19] Tuskan G A, Difazio S, Jansson S,et al. The genome of black cottonwood, Populus trichocarpa(Torr. & Gray)[J]. Science, 2006,313:1596-1604. [20] Rennenberg H, Wilhagen H, Ehlting B. Nitrogen nutrition of poplar trees[J]. Plant Biology,2010,12 (2):275-291. [21] Min X, Siddiqi M Y, Guy R D,et al. A comparative kinetic analysis of nitrate and ammonium influx in two early-successional tree species of temperate and boreal forest ecosystems [J]. Plant, Cell and Environment,2000,23(3): 321-328. [22] Gaur V S, Singh U S, Gupta A K, et al. Understanding the differential nitrogen sensing mechanism in rice genotypes through expression analysis of high and low affinity ammonium transporter genes[J].Molecular Biology Reports, 2012,39(3):2233-2241. [23] Selle A, Willmann M, Grunze N,et al. The high-affnity poplar ammonium importer PttAMT1.2 and its role in ectomycorrhizal symbiosis[J]. New Phytologist,2005,168(3): 697-706. [24] Ehlting B, Dluzniewska P, Dietrich H,et al. Interaction of nitrogen nutrition and salinity in Grey poplar(Populus tremula×alba)[J]. Plant, Cell and Environment,2007,30(7):796-811. [25] Engineer C B, Kranz R G. Reciprocal leaf and root expression of AtAMT1.1 and root architectural changes in response to nitrogen starvation[J]. Plant Physiology, 2007,143(1):236-250. [26] Sohlenkamp C, Wood C C, Roeb G W, et al. Characterization of Arabidopsis AtAMT2, a high-affinity ammonium transporter of the plasma membrane[J]. Plant Physiology,2002,130(4):1788-1796. [27] Mota M, Neto C B, Monteiro A A, et al. Preferential ammonium uptake during growth cycle and identification of ammonium transporter genes in young pear trees[J]. Journal of Plant Nutrition, 2011,34 (6):798-814. [28] 李宝珍,范晓荣,徐国华.植物吸收利用铵态氮和硝态氮的分子调控[J].植物生理学通讯, 2009,45(1):80-88. [29] Lejay L, Gansel X, Cerezo M, et al. Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase[J]. Plant Cell,2003,15(9):2218- 2232. [20] Howitt S M, Udvardi M K. Structure, function and regulation of ammonium transporters in plants[J]. Biochimica et Biophysica Acta-Biomembrances,2000,1465(1-2):152-170. [21] 熊君,王海斌,方长旬,等.不同氮素供应下水稻酚类物质代谢关键酶基因差异表达[J].植物生理与分子生物学学 报,2007,33(5):387-394. [22] Hachiya T, Noguchi K. Integrative response of plant mitochondrial electron transport chain to nitrogen source[J]. Plant cell reports,2011,30(2):195-204. [23] 张韫,崔晓阳.白桦幼苗 NH+4/NO-3吸收特征的研究[J].北京林业大学 学报,2011,33(3):26 -30. [24] Hoopen F T, Cuin T A, Pedas P,et al. Competition between uptake of ammonium and potassium in barley and Arabidopsis roots: molecular mechanisms and physiological consequences[J]. Journal of Experimental Botany,2010,61(9):2303- 2315. [25] Chalot M, Blaudez D, Brun A. Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface[J]. Trends in Plant Science,2006,11(6): 263-266. [26] DesRochers A, van den Driessche R, Thomas B R. Nitrogen fertilization of trembling aspen seedlings grown on soils of different pH[J]. Canadian Journal of Forest Research,2003,33(4):552- 560. [27] 贾慧君.小叶杨吸收利用NH+4-N和NO-3-N的研究[J].山东林业科 技,1990,4(1):62-65. [28] Scheible W R, Gonzalez-Fontes A, Lauerer M,et al. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco[J]. Plant Cell,1997,9(5):783-798. [29] Zhang H, Forde B G. Regulation of Arabidopsis root development by nitrate availability[J]. Journal of Experimental Botany,2000,51(342):51-59. [40] Orsel M, Chopin F, Leleu O,et al. Characterization of a two-component high-affnity nitrate uptake system in Arabidopsis Physiology and protein-protein interaction[J]. Plant Physiology, 2006,142:1304-1317. [41] Fernandez E, Galvan A. Nitrate assimilation in Chlamydomonas[J]. Eukaryotic Cell,2008,7(4):555-559. [42] 童依平,蔡超,刘全友,等.植物吸收硝态氮的分子生物学进展[J].植物营养与肥料学报,2004,10(4):433-440. [43] Crawford N M, Glass A D M. Molecular and physiological aspects of nitrate uptake in plants[J]. Trends Plant Science,1998, 3(10):389-395. [44] Galvan A and Fernandez E. Eukaryotic nitrate and nitrite transporters[J]. Cellular and Molecular Life Sciences, 2001,58:225-233. [45] Nakamura Y, Umemiya Y, Masuda K,et al. Molecular cloning and expression analysis of cDNAs encoding a putative Nrt2 nitrate transporter from peach[J]. Tree Physiology,2007,27(4): 503-510. [46] Li W B, Wang Y, Okamoto M,et al. Dissection of the AtNRT2.1:AtNRT2.2 inducible high-affnity nitrate transporter gene cluster [J]. Plant Physiology,2007,143:425-433. [47] Cai C, Wang J Y, Zhu Y G,et al. Gene structure and expression of the high-affinity nitrate transport system in rice roots[J]. Journal of Integrative Plant Biology,2008,50(4): 443-451. [48] Wang R C, Xing X J, Wang Y,et al. A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1[J]. American Society of Plant Biologists, 2009, 151(1):472-478. [49] Lejay L, Tillard P, Lepetit M, et al. Molecular and functional regulation of two NO-3 uptake systems by N-and C-status of Arabidopsis plants[J]. Plant,1999,18(5): 509-519. [50] Zhuo D, Okamoto M, Vidmar J J, et al. Regulation of a putative high-affinity nitrate transporter(Nrt2; 1At)in roots of Arabidopsis thaliana[J]. Plant,1999, 17(5):563-568. [51] Faure-Rabasse S, Deunff E L, Laine P,et al. Effects of nitrate pulses on BnNRT1 and BnNRT2 genes: mRNA levels and nitrate influx rates in relation to the duration of N deprivation in Brassica napus L[J]. Journal of Experimental Botany, 2002,53(375):1711-1721. [52] Trueman L J, Richardson A, Forde B G. Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii and Aspergillus nidulans[J]. Gene,1996,175(1 -2):223-231. [53] Amarasinghe B H, Bruxelles G L, Braddon M,et al. Regulation of Gm Nrt2 expression and nitrate transport activity in roots of soybean(Glycine max)[J]. Planta,1998, 206:44-52. [54] Krapp A, Fraisier V, Scheible W R,et al. Expression studies of Nrt2.1Np, a putative high-affinity nitrate transporter: evidence for its role in nitrate uptake[J].Plant,1998,14(6): 723-731. [55] Orsel M, Krapp A,Daniel-Vedele F. Analysis of the NRT2 nitrate transporter family in Arabidopsis: structure and gene expression[J]. Plant Physiology,2002, 129(2):886-896. [56] Chopin F, Orsel M, Dorbe M F,et al. The Arabidopsis ATNRT2.1 nitrate transporter controls nitrate content in seeds[J]. Plant Cell,2007,19(5): 1590-1602. [57] Munos S, Cazettes C, Fizames C,et al. Transcript profiling in the chl1-5 mutant of Arabidopsis reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter NRT2.1[J]. The Plant Cell,2004,16(9):2433-2447. [58] 胡廷章,陈国平,胡宗利,等.植物根系对氮胁迫的形态学响应[J].生态学报,2010,30(1): 205-211. [59] Vert G, Chory J. A toggle switch in plant nitrate uptake[J]. Cell,2009,138(6): 1064-1066. [60] Reuveny Z, Dougall D K, Trinity P M. Regulatory coupling of nitrate and sulfate assimilation pathways in cultured tobacco cells [J]. Proceedings of the National Academy of Sciences,1980, 77(11):6670-6672. [61] Prosser I M, Purves J V, Saker L R, et al. Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate[J]. Journal of Experimental Botany,2001,52(354): 113-121. [62] Kim H, Hirai M Y, Hayashi H,et al. Role of O-acetyl-L-serine in the coordinated regulation of the expression of a soybean seed storage-protein gene by sulfur and nitrogen nutrition[J]. Planta,1999,209: 282- 289. [63] Wang R C, Okamoto M, Xing X J, et al. Microarray analysis of the nitrate response in Arabidopsis roots and shoots reveals over 1 000 rapidly responding genes and new linkages to glucose, trehalose-6- phosphate, iron, and sulfate metabolism[J]. Plant Physiology,2003, 132:556-567. [64] Wiren V N, Klair S, Bansal S,et al. Nicotianamine chelates both Fe-III and Fe-II. Implications for metal transport in plants [J]. Plant Physiology,1999,119(3): 1107-1114. [65] Zhou S, Gao X, Wang C, et al. Identification of sugar signals controlling the nitrate uptake by rice roots using a noninvasive technique[J]. Journal of Biosciences,2009,64(9-10): 697-703. [66] Almagro A, Lin S H, Tsay Y F. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development[J]. The Plant Cell,2008,20(12):3289-3299. [67] Li JY, Fu Y L, Pike S M,et al. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance [J]. The Plant Cell, 2010,22(5): 1633-1646. [68] Popova O V, Dietz K J, Golldack D. Salt-dependent expression of a nitrate transporter and two amino acid transporter genes in Mesembryanthemum crystallinum[J]. Plant Molecular Biology, 2003,52:569-578. [69] Little Y D, Rao H, Oliva S,et al. The putative high affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues [J]. Proceedings of the National Academy of Sciences,2005,102: 13693-13698. [70] Remans T, Nacry P, Pervent M,et al. A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis[J]. Plant Physiology,2006, 140(3):909-921. [71] Gan Y B, Zhou Z J, An L J,et al. A comparison between northern blotting and quantitative real-time PCR as a means of detecting the nutritional regulation of genes expressed in roots of Arabidopsis thaliana[J]. Agricultural Sciences in China,2011,10(3):335-342. [72] Tian Q Y, Sun P, Zhang W H. Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana[J]. The New Phytologist,2009, 184(4):918-931. [73] Monachello D, Allot M, Oliva S,et al. Two anion transporters AtClCa and AtClCe fulfill interconnect-ting but not redundant roles in nitrate assimilation pathways[J]. The New Phytologist,2009,183(1):88-94. [74] Takei K, Sakakibara H, Taniguchi M, et al. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator [J].Plant Cell Physiology,2001,42(1):85- 93. [75] Sakakibara H, Takei K, Hirose N. Interactions between nitrogen and cytokinin in the regulation of metabolism and development[J]. Trends Plant Science, 2006,11(9):440-448. [76] Naoko O O, Wasaki J. Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms[J]. Plant Cell Physiology,2010,51(8):1255-1264. |
[1] | 范明阳, 胡萌, 杨园, 方炎明. 中国东部地区马尾松与黄山松群落分类及群落结构和物种多样性特征[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 47-58. |
[2] | 罗楚滢, 佘济云, 唐子朝. 基于SSPs气候场景的濒危植物银杉潜在分布区预测[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 161-168. |
[3] | 李雨晗, 丁彦芬, 张畅为. 南京外秦淮河优势草本植物生态位和种间联结性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 203-210. |
[4] | 赵婷, 白红英, 邓晨晖, 他志杰. 基于NDVI与DEM的山地植被垂直带定量划分——以太白山南坡为例[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 165-171. |
[5] | 魏亚娟, 郭靖, 党晓宏, 解云虎, 汪季, 李小乐, 吴慧敏. 吉兰泰荒漠绿洲过渡带不同生境下白刺灌丛沙堆形态特征与影响机制[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 172-180. |
[6] | 苑景淇, 于忠亮, 兰雪涵, 李成宏, 田年军, 杜凤国. 遮阴对濒危植物朝鲜崖柏光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 58-66. |
[7] | 龚茂佳, 王娟, 付小勇, 寇卫利, 鲁宁, 王秋华, 赖虹燕. 云南广西蒜头果适生区预测及环境影响因子[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 44-52. |
[8] | 陈林, 潘婷婷, 吕笑冬, 汪章沛, 程林. 江西省种子植物分布新资料[J]. 南京林业大学学报(自然科学版), 2021, 45(5): 232-234. |
[9] | 缪菁, 王勇, 王璐, 许晓岗. 基于MaxEnt模型的苦槠潜在地理分布格局变迁预测[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 193-198. |
[10] | 潘婷婷, 陈林, 杨国栋, 伊贤贵, 王贤荣. 南京北部郊野森林群落物种多样性及其环境解释[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 48-54. |
[11] | 王莹莹, 马钰莹, 张永, 黄峥. 生物多样性与传染病风险[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 9-11. |
[12] | 黄雅茹, 辛智鸣, 李永华, 马迎宾, 董雪, 罗凤敏, 李新乐, 段瑞兵. 乌兰布和沙漠人工梭梭茎干液流季节变化及其与气象因子的关系[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 131-139. |
[13] | 段娜, 汪季, 郝玉光, 高君亮, 陈晓娜, 多普增. 水分变化对荒漠植物白刺气体交换参数及形态特征的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 32-38. |
[14] | 陈禹衡, 吕一维, 殷晓洁. 气候变化下西南地区12种常见针叶树种适宜分布区预测[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 113-120. |
[15] | 张继强,陈文业,谈嫣蓉,刘冬皓,袁海峰,王斌杰,刘鸿源,陈旭. 甘肃敦煌西湖湿地芦苇盐化草甸植物群落生态位特征研究.[J]. 南京林业大学学报(自然科学版), 2019, 43(02): 191-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||