南京林业大学学报(自然科学版) ›› 2012, Vol. 36 ›› Issue (04): 140-144.doi: 10.3969/j.jssn.1000-2006.2012.04.029
韩长志
出版日期:
2012-07-07
发布日期:
2012-07-07
基金资助:
HAN Changzhi
Online:
2012-07-07
Published:
2012-07-07
摘要: 我国樟科植物众多,国外有关樟疫霉对樟科植物造成严重危害的报道较多,而国内对其研究较少。笔者从樟疫霉的分类地位、危害分布情况以及鉴定方法、遗传关系、生活史等方面进行综述,在此基础上认为应从以下方面深入研究:(1)对极易受到 樟疫霉危害地区的樟属重要种植地的樟疫霉病害发生情况进行调查,明确樟疫霉的危害状况;(2)对来自不同地区的樟疫霉进行 亚磷酸盐敏感程度研究;(3)对亚磷酸盐不同敏感程度菌株之间的遗传特性进行研究,明确亚磷酸盐的作用机制。
中图分类号:
韩长志. 樟疫霉(Phytophthora cinnamomi)的研究进展[J]. 南京林业大学学报(自然科学版), 2012, 36(04): 140-144.
HAN Changzhi. Research progress on Phytophthora cinnamomi[J].Journal of Nanjing Forestry University (Natural Science Edition), 2012, 36(04): 140-144.DOI: 10.3969/j.jssn.1000-2006.2012.04.029.
[1] Muthoka N M, Ndungu B, Wephukulu S B, et al. A potential for organic macadamia nut production in eastern Kenya: A case study of meru district [C]//Proceedings of the 5th Workshop on Sustainable Horticultural Production. Njoro, Kenya:Egerton University, 2005. [2] McDonald A E, Niere J O, Plaxton W C. Phosphite disrupts the acclimation of Saccharomyces cerevisiae to phosphate starvation [J]. Canadian Journal of Microbiology, 2001, 47(11): 969-978. [2] Hardham A R. Pathogen profile Phytophthora cinnamomi[J]. Molecular Plant Pathology, 2005, 6(6): 589-604. [4] 黄世钰,朱晓鲁,杨建.雪松疫霉根腐病药剂防治试验初报[J].江苏林业科技,1993(3):41-44. [5] Anderson P, Brundrett M, Grierson P, et al. Impact of severe forest dieback caused by Phytophthora cinnamomi on macrofungal diversity in the northern jarrah forest of Western Australia [J]. Forest Ecology and Management, 2010, 259(5): 1033-1040. [6] Newhook F J, Waterhouse G M, Stamps D J. Tabular key to the species of Phytophthora de Bary [J]. Mycological Pocpers, 1978, 143: 1-20. [7] Waterhouse G M, Newhook F J, Stamps D J. Present criteria for classification of Phytophthora [C]//Erwin D C, Bartnicki-Garcia S, Tsao P. In Phytophthora. Its Biology, Taxonomy, Ecology, and Pathology. St Paul: American Phytopathological Society, 1983. [8] Guharoy S, Bhattacharyya S, Mukherjee S K, et al. Phytophthora melonis associated with fruit and vine rot disease of pointed gourd in India as revealed by RFLP and sequencing of ITS region [J]. Journal of Phytopathology, 2006, 154(10): 612-615. [9] 陈宏宇,文景芝.大豆疫霉菌遗传多样性的RAPD分析[J].中国油料作物学报,2006,28(3):330-334. [10] Wang Z Y, Langston D B, Csinos A S, et al. Development of an improved isolation approach and simple sequence repeat markers to characterize Phytophthora capsici populations in irrigation ponds in southern Georgia [J]. Applied and Environmental Microbiology, 2009, 75(17): 5467-5473. [11] Kong P, Hong C, Richardson P A, et al. Single strand-conformation polymorphism of ribosomal DNA for rapid species differentiation in genus Phytophthora [J]. Fungal Genetics Biology, 2003, 39(3): 238- 249. [12] Dobrowolski M P, Tommerup I C, Shearer B L, et al. Three clonal lineages of Phytophthora cinnamomi in Australia revealed by microsatellites [J]. Phytopathology, 2003, 93(6): 695-704. [13] King M. The phosphate responsive transcriptome of Phytophthora cinnamomi [D]. Western Australia, Perth: Murdoch University, 2007. [14] Tyler B M, Tripathy S, Zhang X, et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis [J]. Science, 2006, 313(5791): 1261-1266. [15] Gotesson A, Marshall J S, Jones D A, et al. Characterization and evolutionary analysis of a large polygalacturonase gene family in the oomycete plant pathogen Phytophthora cinnamomi [J]. Molecular Plant-Microbe Interactions, 2002, 15(9): 907-1021. [16] Rossman A Y, Palm M E. Why aren’t Phytophthora and other Oomycota true fungi [J]. Outlooks in Pest Management, 2006, 17: 217-219. [17] Bouzenzana J, Pelosi L, Briolay A, et al. Identification of the first Oomycete annexin as a(1→3)-β-D- glucan synthase activator [J]. Molecular Microbiology, 2006, 62(2): 552-565. [18] Chiou T J, Aung K, Lin S I, et al. Regulation of phosphate homeostasis by MicroRNA in Arabidopsis [J]. The Plant Cell, 2006, 18: 412-421. [19] Lee T M, Tsai P F, Shyu Y T, et al. The effects of phosphite on phosphate starvation responses of Ulva lactuca(Ulvales, Chlorophyta)[J]. Journal of Phycology, 2005, 41(5): 975-982. [20] Varadarajan D K, Karthikeyan A S, Matilda P D, et al. Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation [J]. Plant Physiology, 2002, 129(3): 1232-1240. [21] Rizzo D M, Garbelotto M, Hansen E M. Phytophthora ramorum: Integrative research and management of an emerging pathogen in California and Oregon forests [J]. Annual Review of Phytopathology, 2005, 43, 309- 335. [22] Marshall J S, Ashton A R, Govers F, et al. Isolation and characterization of four genes encoding pyruvate, phosphate dikinase in the Oomycete plant pathogen Phytophthora cinnamomi [J]. Current Genetics, 2001, 40: 73-81. [23] Robinson L H, Cahill D M. Ecotypic variation in the response of Arabidopsis thaliana to Phytophthora cinnamomi [J]. Australasian Plant Pathology, 2003, 32: 53-64. [24] Takemoto D, Hardham A R, Jones D A. Differences in cell death induction by Phytophthora elicitins are determined by signal components downstream of MAP kinase in different species of Nicotiana and cultivars of Brassica rapa and Raphanus sativus [J]. Plant Physiology, 2005, 138(3): 1491-1504. [25] Goodin M M, Zaitlin D, Naidu R A, et al. Nicotiana benthamiana: Its history and future as a model for plant pathogen interactions [J]. Molecular Plant-Microbe Interactions, 2008, 21(8): 1015-1026. [26] Bos J I, Chaparro G A, Quesada O L M, et al. Distinct amino acids of the Phytophthora infestans effector AVR3a condition activation of R3a hypersensitivity and suppression of cell death [J]. Molecular Plant-Microbe Interact, 2009, 22(3): 269-281. [27] Dou D L, Kale S D, Wang X L, et al. Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b [J]. Plant Cell, 2008, 20(4): 1118-1133. [28] Burch-Smith T M, Schiff M, Liu Y, et al. Efficient virus-induced gene silencing in Arabidopsis [J]. Plant Physiology, 2006, 142: 21-27. [29] Hardy G E S, Barrett S, Shearer B L. The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems [J]. Australasian Plant Pathology, 2001, 30(2): 133-139. [20] Daniel R, Guest D. Defense responses induced by potassium phosphonate in Phytophthora palmivora- challenged Arabidopsis thaliana [J]. Physiological and Molecular Plant Pathology, 2006, 67(6-7): 194 -201. [21] Wilkinson C J, Holmes J M, Dell B, et al. Effect of phosphite on in planta zoospore production of Phytophthora cinnamomi [J]. Plant Pathology, 2001, 50: 587-593. [22] Wilkinson C J, Shearer B L, Jackson T J, et al. Variation in sensitivity of Western Australian isolates of Phytophthora cinnamomi to phosphite in vitro[J]. Plant Pathology, 2001, 50: 83-89. [23] 巩振辉.疫病(Phytophthora cinnamomi)pg基因的克隆、测序及其遗传转化研究[D].杨凌:西北农林科技大 学,2003. |
[1] | 彭萌萌, 吴红渠, 张佳雯, 闫丽琼, 曹传旺, 孙丽丽. 基于RNAi技术解析美国白蛾HcAnk1和HcAnk2基因功能及对HcNPV的敏感性[J]. 南京林业大学学报(自然科学版), 2024, 48(3): 181-190. |
[2] | 方静, 张书曼, 严善春, 武帅, 赵佳齐, 孟昭军. 两种丛枝菌根真菌复合接种对青山杨叶片抗美国白蛾的影响[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 144-154. |
[3] | 祝艳艳, 贾瑞瑞, 付钰, 常林, 岳远征, 杨秀莲, 王良桂. 不同楸树品种对茎腐病的抗性差异研究[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 155-165. |
[4] | 张馨方, 王广鹏, 张树航, 李颖, 郭燕. 不同抗螨性板栗差异次生代谢物筛选与分析[J]. 南京林业大学学报(自然科学版), 2024, 48(2): 234-240. |
[5] | 赵亚楠, 孙天骅, 王利峰, 许强, 刘军侠, 高宝嘉, 周国娜. 油松抗性相关激素与代谢物对油松毛虫取食与剪叶刺激的响应[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 219-226. |
[6] | 张丞慧, 祖国浩, 王海洋, 薛昊. 蝇克跳小蜂属1中国新记录种(膜翅目:跳小蜂科)[J]. 南京林业大学学报(自然科学版), 2024, 48(1): 214-218. |
[7] | 孙凯丽, 贺春玲, 胡俊杰, 方全博, 栾科, 任迎丰, 肖治术. 岩田蜾蠃𧎥在黄喙蜾蠃腹部的寄生习性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 243-250. |
[8] | 程方, 孙婷玉, 叶建仁. 抗松针褐斑病湿地松未成熟合子胚胚性愈伤组织的诱导[J]. 南京林业大学学报(自然科学版), 2023, 47(6): 175-182. |
[9] | 于赐刚, 郭晓平, 马月, 张振华, 刘燕, 董姗姗, 孙硕. 浙江松阳县鸟类群落结构和多样性分析[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 231-236. |
[10] | 刘佳磊, 白润娥, 张锴, 文才艺, 闫凤鸣. 我国桂花树上常见粉虱种类记述[J]. 南京林业大学学报(自然科学版), 2023, 47(5): 237-244. |
[11] | 杨乐, 黄晓君, 包玉海, 包刚, 佟斯琴, 苏都毕力格. 无人机航高对落叶松毛虫虫害遥感监测精度的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4): 13-22. |
[12] | 高家军, 张旭, 郭颖, 刘昱坤, 郭安琪, 石蒙蒙, 王鹏, 袁莹. 融合Swin Transformer的虫害图像实例分割优化方法研究[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 1-10. |
[13] | 杨堃, 范习健, 薄维昊, 刘婕, 王俊玲. 基于视觉加强注意力模型的植物病虫害检测[J]. 南京林业大学学报(自然科学版), 2023, 47(3): 11-18. |
[14] | 王立超, 陈凤毛, 董晓燕, 田成连, 王洋. 松墨天牛取食和产卵特性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 219-224. |
[15] | 石慧敏, 叶建仁, 王焱, 陆蓝翔, 史纪武. 响应面优化贝莱斯芽孢杆菌(Bacillus velezensis)菌株YH-18产芽孢培养基和培养条件[J]. 南京林业大学学报(自然科学版), 2023, 47(1): 209-218. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||